
Programmer's Guide

usbdrdaqpg.en r9

Data Logger

USB DrDAQ®

IUSB DrDAQ Programmer's Guide

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved. usbdrdaqpg.en r9

Contents
1 Introduction .. 1

1 Overview .. 1

2 License agreement ... 1

3 Trademarks .. 2

4 Software updates .. 2

2 Writing your own software ... 3

1 About the driver .. 3

2 Installing the driver .. 3

3 Example code ... 3

4 Connecting the logger .. 3

5 Capture modes ... 3

6 USB DrDAQ scaling files (.DDS) .. 4

3 USB DrDAQ API functions .. 7

1 UsbDrDaqCloseUnit - close the unit ... 8

2 UsbDrDaqEnableRGBLED - enable or disable RGB mode on the LED .. 9

3 UsbDrDaqGetChannelInfo - return information about the scaling in use on a channel 10

4 UsbDrDaqGetInput - use the general-purpose I/Os as digital inputs .. 11

5 UsbDrDaqGetPulseCount - return the current pulse count ... 12

6 UsbDrDaqGetScalings - discover the scalings, both built-in and custom, that are available 13

7 UsbDrDaqGetSingle - get a single value from a specified channel ... 14

8 UsbDrDaqGetSingleF - get a single floating-point value ... 15

9 UsbDrDaqGetTriggerTimeOffsetNs - return jitter-correction parameter .. 16

10 UsbDrDaqGetUnitInfo - return information about the unit .. 17

11 UsbDrDaqGetValues - get sample values after a run .. 18

12 UsbDrDaqGetValuesF - get floating-point values after a run .. 19

13 UsbDrDaqOpenUnit - open and enumerate the unit ... 20

14 UsbDrDaqOpenUnitAsync - open the unit without waiting for completion ... 21

15 UsbDrDaqOpenUnitProgress - report progress of UsbDrDaqOpenUnitAsync ... 22

16 UsbDrDaqPhTemperatureCompensation - select pH temperature compensation 23

17 UsbDrDaqPingUnit - check that a device is connected .. 24

18 UsbDrDaqReady - indicate when UsbDrDaqRun has captured data ... 25

19 UsbDrDaqRun - tell unit to start capturing data ... 26

20 UsbDrDaqSetDO - control the digital outputs .. 27

21 UsbDrDaqSetInterval - set sampling speed of the unit (integer) .. 28

22 UsbDrDaqSetIntervalF - set sampling speed of the unit (floating-point) ... 30

23 UsbDrDaqSetPWM - configure general-purpose I/Os as pulse-width modulation outputs 31

24 UsbDrDaqSetRGBLED - set color of LED in RGB mode .. 32

25 UsbDrDaqSetScalings - set the scaling for a channel .. 33

26 UsbDrDaqSetSigGenArbitrary - control the arbitrary waveform generator ... 34

27 UsbDrDaqSetSigGenBuiltIn - set the arbitrary waveform generator using standard waveform types 35

28 UsbDrDaqSetTrigger - set up the trigger .. 36

ContentsII

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved.usbdrdaqpg.en r9

29 UsbDrDaqStartPulseCount - use general-purpose I/Os for pulse counting ... 37

30 UsbDrDaqStop - abort data collection ... 38

31 UsbDrDaqStopSigGen - turn AWG off ... 39

32 Channel numbers .. 40

33 PICO_STATUS values .. 40

4 Glossary ... 41

Index .. 43

USB DrDAQ Programmer's Guide 1

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved. usbdrdaqpg.en r9

1 Introduction

1.1 Overview
The USB DrDAQ PC Data Logger is a medium-speed,
multichannel voltage-input device for sampling data
using a PC. This manual explains how to use the
Application Programming Interface and drivers to write
your own programs to control the unit. You should read it
in conjunction with the USB DrDAQ User's Guide.

The Software Development Kit for the USB DrDAQ is
compatible with 32-bit and 64-bit editions of Microsoft
Windows 7, 8 and 10.

1.2 License agreement
Grant of license. The material contained in this release is licensed, not sold. Pico Technology Limited ("Pico")
grants a license to the person who installs this software, subject to the conditions listed below.

Access. The licensee agrees to allow access to this software only to persons who have been informed of and
agree to abide by these conditions.

Usage. The software in this release is for use only with Pico products or with data collected using Pico products.

Copyright. The software in this release is for use only with Pico products or with data collected using Pico
products. You may copy and distribute the SDK without restriction, as long as you do not remove any Pico
Technology copyright statements. The example programs in the SDK may be modified, copied and distributed for
the purpose of developing programs to collect data using Pico products.

Liability. Pico and its agents shall not be liable for any loss or damage, howsoever caused, related to the use of
Pico equipment or software, unless excluded by statute.

Fitness for purpose. No two applications are the same, so Pico cannot guarantee that its equipment or software
is suitable for a given application. It is therefore the user's responsibility to ensure that the product is suitable for
the user's application.

Mission-critical applications. Because the software runs on a computer that may be running other software
products, and may be subject to interference from these other products, this license specifically excludes usage
in "mission-critical" applications, for example life-support systems.

Viruses. This software was continuously monitored for viruses during production. However, the user is
responsible for virus checking the software once it is installed.

Support. No software is ever error-free, but if you are dissatisfied with the performance of this software, please
contact our technical support staff.

Introduction2

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved.usbdrdaqpg.en r9

Upgrades. We provide upgrades, free of charge, from our web site at www.picotech.com. We reserve the right to
charge for updates or replacements sent out on physical media.

1.3 Trademarks
Pico Technology, PicoScope, PicoLog and DrDAQ are trademarks of Pico Technology Limited, registered in the
United Kingdom and other countries.

PicoLog and Pico Technology are registered in the U.S. Patent and Trademark Office.

Windows and Excel are registered trademarks of Microsoft Corporation in the USA and other countries.

1.4 Software updates
Our software is regularly updated with new features. To check what version of the software you are running, start
PicoScope or PicoLog and select the Help > About menu. PicoScope can check for updates automatically and
advise you if an update is available. You can download the latest versions of the software free of charge from the
Pico Technology web site at:

www.picotech.com/downloads

Alternatively, the latest software can be purchased on disk from Pico Technology.

To be kept up-to-date with news of new software releases, click here to join our e-mail mailing list.

https://www.picotech.com/downloads
https://www.picotech.com/tech-support

USB DrDAQ Programmer's Guide 3

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved. usbdrdaqpg.en r9

2 Writing your own software

2.1 About the driver
USB DrDAQ is supplied with a kernel driver and a library, UsbDrDaq.dll, containing routines that you can build
into your own programs. The driver is supported by Microsoft Windows 7, 8 and 10 and is supplied in 32-bit and
64-bit versions.

The PicoSDK containing the drivers can be downloaded from www.picotech.com/downloads.

The driver supports up to 64 units at one time.

2.2 Installing the driver
The drivers are supplied with the USB DrDAQ SDK. You can download the latest 32-bit and 64-bit versions of the
SDK from our website at:

www.picotech.com/downloads

Click PicoLog Data Loggers > DrDAQ > Software > PicoSDK

2.3 Example code
Example code in various programming languages is available from the "picotech" organization on GitHub.

2.4 Connecting the logger
Before you connect your logger, you must first install the driver.

To connect the data logger, plug the cable provided into any available USB port on your PC. The first time you
connect the unit, some versions of Windows may display a New Hardware Wizard. Follow any instructions in the
Wizard and wait for the driver to be installed. The unit is then ready for use.

2.5 Capture modes
Three modes are available for capturing data:

· BM_SINGLE: collect a single block of data and exit

· BM_WINDOW: collect a series of overlapping blocks of data

· BM_STREAM: collect a continuous stream of data

BM_SINGLE is useful when you wish to collect data at high speed for a short period: for example, to collect 1000
readings in 50 milliseconds. The maximum block size is 16,384 samples, shared between all active channels.

BM_WINDOW is useful when collecting several blocks of data at low speeds - for example when collecting 10,000
samples over 10 seconds. Collecting a sequence of single blocks like this would take 10 seconds for each block,
so displayed data would not be updated frequently. Using windowing, it is possible to ask for a new block more
frequently, for example every second, and to receive a block containing 9 seconds of repeat data and 1 second of
new data. The block is effectively a 10-second window that advances one second per cycle. If

UsbDrDaqGetValuesF() is called, floating point numbers will be returned instead of integer values for

UsbDrDaqGetValues().

https://www.picotech.com/downloads
https://www.picotech.com/downloads
https://github.com/picotech

Writing your own software4

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved.usbdrdaqpg.en r9

BM_STREAM is useful when you need to collect data continuously for long periods. In principle, it could be used to

collect data indefinitely. Every time UsbDrDaqGetValues() is called, it returns the new readings since the last

time it was called. The noOfValues argument passed to UsbDrDaqRun() must be sufficient to ensure that

the buffer does not overflow between successive calls to UsbDrDaqGetValues(). For example, if you call

UsbDrDaqGetValues() every second and you are collecting 500 samples per second, noOfValues must be

at least 500, or preferably 1000, to allow for delays in the operating system. Always call UsbDrDaqStop() after
a streaming mode capture to prepare the device for the next capture.

2.6 USB DrDAQ scaling files (.DDS)
The DrDAQ driver has built-in scaling for each of the built-in and Pico-supplied sensors. You can incorporate

scaling for your own sensors by adding a file called scaling.dds (where "scaling" can be replaced with a

name of your choice). This file will contain the details of your sensor.

The driver can return values in either integer or floating-point form. If you are calling UsbDrDaqGetValuesF()

floating point numbers will be returned. Calling UsbDrDaqGetValues() will return integer values. In both forms
the values may require scaling to move the decimal point. For example, the driver returns a pH of 7.65 as 765. You

can call UsbDrDaqGetChannelInfo() to find out how many decimal places a channel is using, and also to
get a divider that converts the raw value to the scaled value. For pH, the returned divider is 100, so 765 divided by
100 gives 7.65.

For some sensors, there is more than one possible scaling available. You can call UsbDrDaqGetScalings()

to get a list of valid scaling codes, then call UsbDrDaqSetScalings() to select one of them. Once selected,

UsbDrDaqGetChannelInfo() will return full information about the selected scaling. If you do not use

UsbDrDaqSetScalings(), the driver will automatically select the first available scaling for each channel.

USB DrDAQ scaling files can be used to supplement the scalings built into the driver. Several .DDS files may be
used, and these must be placed in the same directory as usbdrdaq.dll on Windows platforms. For Linux platforms,
the .DDS files can be placed in the Home directory or in a location that is added to a SCALING_FILE_PATH
environment variable. The total number of sets of scaling data in all the files used must not exceed 99.

Each scaling file may contain more than one set of scaling data. Each scaling must have a unique scaling

number, contained in the [Scale...] section heading.

A set of typical entries from a .DDS file is shown below:

[Scale1]

Resistor=1

LongName=CustomTemperature1

ShortName=TempC

Units=C

MinValue=-40

MaxValue=120

OutOfRange=0

Places=1

Method=0

IsFast=Yes

NoOfPoints=32

Raw1=2.385

Scaled1=-30

...

Raw32=1.32

Scaled32=100

USB DrDAQ Programmer's Guide 5

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved. usbdrdaqpg.en r9

[Scale2]

Resistor=2.2

LongName=CustomTemperature2

ShortName=TempF

Units=F

MinValue=32

MaxValue=160

...

[Scale3]

Resistor=3.3

LongName=CustomLight

ShortName=Light

Units=lux

MinValue=0

MaxValue=20000

...

The meanings of the terms in the .DDS file are as follows:

[Scale1]

A unique number, from 1 to 99, to identify this entry. (Pico-created numbers are from 100 upwards.)

Resistor=1

The ID resistor value in kilohms. In this example "1" represents 1k, "2.2" represents 2k2 and so on.

For external sensors, this resistor should be fitted in the sensor. You must use one of the following resistors:
1k0, 2k2, 3k3, 5k6, 7k5 or 10k. The resistor must be 1% tolerance or better.

For internal sensors, use the following "virtual" resistor values:

Channel Resistor value

Sound waveform 1200

Sound level 1300

Voltage 1500

Resistance 1600

pH 1400

Temperature 1100

Light 1000

LongName=Temperature

Used in PicoLog

ShortName=TempC

This field is not used by USB DrDAQ running PicoScope or PicoLog.

Units=C

Displayed on graphs

MinValue=-40

MaxValue=120

Writing your own software6

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved.usbdrdaqpg.en r9

Note: For PicoScope these values will determine the maximum and minimum values displayed in Scope View.
 For PicoLog these values determine what Maximum range is displayed in the Graph View (set in the Graph
Options dialog).

Places=1

Number of decimal places. The options are 0, 1, 2 and 3. With places=1 the value 15.743 would be returned

as 157, meaning 15.7. With places=2, the same value would be returned as 1574.

Method=0
This specifies the scaling method. 0 specifies table lookup and 1 specifies linear scaling.

Offset=0

Gain=1
These are the offset and gain values for linear scaling.

OutOfRange=0
This specifies what to do if the raw value is outside the range of the table lookup. The options are:
0 - treat as a sensor failure
1 - clip the value to the minimum or maximum table value
2 - extrapolate the value using the nearest two table entries.

ScopeRange=1.25V
This is used when scaling the oscilloscope channel. It specifies the range of the oscilloscope channel that
should be used. Possible values are 10 V, 5 V, 2.5 V, and 1.25 V.

NoOfPoints=32
This is the number of table lookup points.

Raw1=2.385
Raw value for the first point in the look up table. The value is in V (volts) and should not be greater than 2.500
V.

Scaled1=-30
Scaled value for the first point in the look up table. The units are specified by the units parameter.

USB DrDAQ Programmer's Guide 7

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved. usbdrdaqpg.en r9

3 USB DrDAQ API functions

The driver functions supplied with the USB DrDAQ data logger are listed in the following sections.

The driver allows you to do the following:

· Identify and open the logger
· Take a single reading from a particular channel
· Collect a block of samples at fixed time intervals from one or more channels
· Set up a trigger event for a particular channel
· Get information about scalings available for a channel
· Select a scaling for a channel
· Control and read general-purpose I/Os
· Control arbitrary waveform generator

You can specify a sampling interval from 1 microsecond to 1 second. The shortest interval that the driver will
accept depends on the capture mode selected.

The normal calling sequence to collect a block of data is as follows:

Check that the driver version is correct

Open the unit

Set trigger mode // if required

Set sampling mode // channels and time per sample

While you want to take measurements,

 Run

 While not ready

 Wait

 End while

 ... Get a block of data ...

End while

Close the unit

Unload the driver // happens automatically when you terminate the application

USB DrDAQ API functions8

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved.usbdrdaqpg.en r9

3.1 UsbDrDaqCloseUnit - close the unit
PICO_STATUS UsbDrDaqCloseUnit

(

int16_t handle

)

This function closes the unit.

Arguments

handle: device identifier returned from UsbDrDaqOpenUnit() or UsbDrDaqOpenUnitProgress().

Returns

PICO_OK

PICO_HANDLE_INVALID

USB DrDAQ Programmer's Guide 9

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved. usbdrdaqpg.en r9

3.2 UsbDrDaqEnableRGBLED - enable or disable RGB
mode on the LED

PICO_STATUS UsbDrDaqEnableRGBLED

(

int16_t handle,

int16_t enabled

)

This function enables or disables RGB mode on the LED.

Arguments

handle: device identifier returned from UsbDrDaqOpenUnit() or UsbDrDaqOpenUnitProgress().

enabled: if non-zero, RGB mode is enabled. If zero RGB mode is disabled and the LED returns to normal
operation (flashing when sampling).

Returns

PICO_OK

PICO_NOT_FOUND
PICO_NOT_RESPONDING

 http://www.elso.sk/product.php?id_product=2744

USB DrDAQ API functions10

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved.usbdrdaqpg.en r9

3.3 UsbDrDaqGetChannelInfo - return information about
the scaling in use on a channel

PICO_STATUS UsbDrDaqGetChannelInfo

(

int16_t handle,

float * min,

float * max,

int16_t * places,

int16_t * divider,

USB_DRDAQ_INPUTS channel

)

This procedure returns a set of information about the currently selected scaling for the specified channel. If a
parameter is not required, you can pass a null pointer to the routine. You can obtain a list of available scalings by

calling UsbDrDaqGetScalings().

// Obtain scaling divider and apply it to sampled data

float scaled_values[ARRAY_SIZE];

status = UsbDrDaqGetValues(g_handle, values, &noOfValues, &overflow,

&triggerIndex);

status = UsbDrDaqGetChannelInfo(g_handle, &min, &max, &places, ÷r,

channel);

for (i = 0; i < noOfValues; i++)

 scaled_values[i] = values[i] / (float)divider;

Arguments

handle: device identifier returned from UsbDrDaqOpenUnit() or UsbDrDaqOpenUnitProgress().

min: on exit, the minimum value that the channel can take.

max: on exit, the maximum value that the channel can take.

places: on exit, the number of decimal places.

divider: on exit, the number that raw values should be divided by to give scaled numbers.

channel: the channel to return details for. See Channel numbers.

Returns

PICO_OK

PICO_NOT_FOUND

PICO_INVALID_PARAMETER

USB DrDAQ Programmer's Guide 11

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved. usbdrdaqpg.en r9

3.4 UsbDrDaqGetInput - use the general-purpose I/Os as
digital inputs

PICO_STATUS UsbDrDaqGetInput

(

int16_t handle,

USB_DRDAQ_GPIO IOChannel,

int16_t pullUp,

int16_t * value

)

This function is used to configure the general-purpose I/Os as digital inputs and read their states.

Arguments

handle: device identifier returned from UsbDrDaqOpenUnit() or UsbDrDaqOpenUnitProgress().

IOChannel: identifies which of the GPIO inputs to read. See Channel numbers.

pullUp: specifies whether or not to connect an internal pull-up resistor to the input:

0 = don't connect – input will be in an undefined state when not connected to an external voltage source.

1 = connect – input will be 1 if not connected to an external source.

value: on exit, indicates the state of the input:

0 = logic low

1 = logic high

Returns

PICO_OK

PICO_NOT_FOUND

PICO_NOT_RESPONDING

PICO_INVALID_PARAMETER

USB DrDAQ API functions12

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved.usbdrdaqpg.en r9

3.5 UsbDrDaqGetPulseCount - return the current pulse
count

PICO_STATUS UsbDrDaqGetPulseCount

(

int16_t handle,

USB_DRDAQ_GPIO IOChannel,

int16_t * count

)

This function will return the current pulse count. It should be called after pulse counting has been started using

UsbDrDaqStartPulseCount().

Arguments

handle: device identifier returned from UsbDrDaqOpenUnit() or UsbDrDaqOpenUnitProgress().

IOChannel: which GPIO to use. See Channel numbers.

count: on exit, contains the current count.

Returns

PICO_OK

PICO_NOT_FOUND

PICO_NOT_RESPONDING

PICO_INVALID_PARAMETER

USB DrDAQ Programmer's Guide 13

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved. usbdrdaqpg.en r9

3.6 UsbDrDaqGetScalings - discover the scalings, both
built-in and custom, that are available

PICO_STATUS UsbDrDaqGetScalings

(

int16_t handle

USB_DRDAQ_INPUTS channel,

int16_t * nScales,

int16_t * currentScale,

int8_t * names,

int16_t namesSize

)

This function discovers the scalings, both built-in and custom, that are available for a particular channel. Having

chosen a scaling number, you can pass it to UsbDrDaqSetScalings() to apply the scaling to the selected
channel.

Arguments

handle: device identifier returned from UsbDrDaqOpenUnit() or UsbDrDaqOpenUnitProgress().

channel: the channel number.

nScales: output. The function writes the number of available scales here.

currentScale: output. An index to the currently selected scale here.

names: output. A string containing the scaling names and indices.

namesSize: the size of names.

Returns

PICO_OK

PICO_NOT_FOUND

PICO_INVALID_CHANNEL

USB DrDAQ API functions14

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved.usbdrdaqpg.en r9

3.7 UsbDrDaqGetSingle - get a single value from a
specified channel

PICO_STATUS UsbDrDaqGetSingle

(

int16_t handle,

USB_DRDAQ_INPUTS channel,

int16_t * value,

uint16_t * overflow

)

This function returns a single sample value from the specified input channel.

Arguments

handle: device identifier returned from UsbDrDaqOpenUnit() or UsbDrDaqOpenUnitProgress().

channel: which channel to sample. See Channel numbers.

value: on exit, the sample value.

Note: With certain scalings, such as resistance in kilohms, the integer returned in value may be unable to

represent the full resolution of the device. In this case, use UsbDrDaqGetSingleF() instead to obtain a
floating-point value.

overflow: on exit, a bit field indicating which, if any, input channels overflowed the input range of the device. A

bit set to 1 indicates an overflow. The least significant bit corresponds to channel 1. May be NULL if an overflow
warning is not required.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_NO_SAMPLES_AVAILABLE

PICO_DEVICE_SAMPLING

PICO_NULL_PARAMETER

PICO_INVALID_PARAMETER

PICO_DATA_NOT_AVAILABLE

PICO_INVALID_CALL

PICO_NOT_RESPONDING

PICO_MEMORY

USB DrDAQ Programmer's Guide 15

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved. usbdrdaqpg.en r9

3.8 UsbDrDaqGetSingleF - get a single floating-point
value

PICO_STATUS UsbDrDaqGetSingleF

(

int16_t handle,

USB_DRDAQ_INPUTS channel,

float * value,

uint16_t * overflow

)

This function returns a single floating-point sample value from the specified input channel. In all other respects it

is the same as UsbDrDaqGetSingle().

USB DrDAQ API functions16

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved.usbdrdaqpg.en r9

3.9 UsbDrDaqGetTriggerTimeOffsetNs - return
jitter-correction parameter

PICO_STATUS UsbDrDaqGetTriggerTimeOffsetNs

(

int16_t handle,

int64_t * time

)

This function returns the time between the trigger point and the first post-trigger sample. This is calculated using
linear interpolation. The value may be used to reduce the apparent jitter of the signal with respect to the trigger.

Arguments

handle: device identifier returned from UsbDrDaqOpenUnit() or UsbDrDaqOpenUnitProgress().

time: on exit, trigger time in nanoseconds.

Returns

PICO_OK

PICO_NOT_FOUND

USB DrDAQ Programmer's Guide 17

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved. usbdrdaqpg.en r9

3.10 UsbDrDaqGetUnitInfo - return information about the
unit

PICO_STATUS UsbDrDaqGetUnitInfo

(

int16_t handle,

int8_t * string,

int16_t stringLength,

int16_t * requiredSize,

PICO_INFO info

)

This function returns a string containing the specified item of information about the unit.

If you want to find out the length of the string before allocating a buffer for it, call the function with string =

NULL first.

Arguments

handle: device identifier returned from UsbDrDaqOpenUnit() or UsbDrDaqOpenUnitProgress().

string: location of a buffer where the function writes the requested information, or NULL if you are only

interested in the value of requiredSize.

stringLength: the maximum number of characters that the function should write to string.

requiredSize: on exit, the length of the information string before it was truncated to stringLength. If the

string was not truncated, requiredSize will be less than or equal to stringLength.

info: the information that the driver should return. These values are specified in PicoStatus.h.

PICO_DRIVER_VERSION

PICO_USB_VERSION

PICO_HARDWARE_VERSION

PICO_VARIANT_INFO

PICO_BATCH_AND_SERIAL

PICO_CAL_DATE

PICO_KERNEL_DRIVER_VERSION

PICO_FIRMWARE_VERSION_1 - firmware number

PICO_FIRMWARE_VERSION_2 - same as PICO_FIRMWARE_VERSION_1

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_NULL_PARAMETER

PICO_INVALID_INFO

PICO_INFO_UNAVAILABLE

USB DrDAQ API functions18

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved.usbdrdaqpg.en r9

3.11 UsbDrDaqGetValues - get sample values after a run
PICO_STATUS UsbDrDaqGetValues

(

int16_t handle,

int16_t * values,

uint32_t * noOfValues,

uint16_t * overflow,

uint32_t * triggerIndex

)

This function is used to get values after calling UsbDrDaqRun().

Note: Please refer to USB DrDAQ scaling files (.DDS) because you will need to convert the data values using
the divider for that channel.

Arguments

handle: device identifier returned from UsbDrDaqOpenUnit() or UsbDrDaqOpenUnitProgress().

values: an array of sample values returned by the function. The size of this buffer must be the number of
enabled channels multiplied by the number of samples to be collected.

Note 1: The order of the channels will be as stated in Channel numbers, regardless of the order used in the

UsbDrDaqSetInterval() channels array.

Note 2: With certain scalings, such as resistance in kilohms, the integers returned in the values array may be

unable to represent the full resolution of the device. In this case, use UsbDrDaqGetValuesF() instead to
obtain floating-point values.

noOfValues: on entry, the number of sample values per channel that the function should collect. On exit, the
number of samples per channel that were actually written to the buffer.

overflow: on exit, a bit field indicating which, if any, input channels overflowed the input range of the device. A

bit set to 1 indicates an overflow. The least significant bit corresponds to channel 1. May be NULL if an overflow
warning is not required.

triggerIndex: on exit, a number indicating when the trigger event occurred. The number is a zero-based index

to the values array, or 0xFFFFFFFF if the information is not available. On entry, the pointer may be NULL if a
trigger index is not required.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_NO_SAMPLES_AVAILABLE

PICO_DEVICE_SAMPLING

PICO_NULL_PARAMETER

PICO_INVALID_PARAMETER

PICO_TOO_MANY_SAMPLES

PICO_DATA_NOT_AVAILABLE

PICO_INVALID_CALL

PICO_NOT_RESPONDING

PICO_MEMORY

USB DrDAQ Programmer's Guide 19

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved. usbdrdaqpg.en r9

3.12 UsbDrDaqGetValuesF - get floating-point values
after a run

PICO_STATUS UsbDrDaqGetValuesF

(

int16_t handle,

float * values,

uint32_t * noOfValues,

uint16_t * overflow,

uint32_t * triggerIndex

)

This function is used to get floating-point values after calling UsbDrDaqRun(). In all other respects it is the

same as UsbDrDaqGetValues().

Note: Please refer to USB DrDAQ scaling files (.DDS) because you will need to convert the data values using
the divider for that channel.

USB DrDAQ API functions20

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved.usbdrdaqpg.en r9

3.13 UsbDrDaqOpenUnit - open and enumerate the unit
PICO_STATUS UsbDrDaqOpenUnit

(

int16_t * handle

)

This function opens and enumerates the unit.

Arguments

handle: on exit, a value that uniquely identifies the data logger that was opened. Use this as the handle

parameter when calling any other UsbDrDaq API function.

Returns

PICO_OK

PICO_OS_NOT_SUPPORTED

PICO_OPEN_OPERATION_IN_PROGRESS

PICO_EEPROM_CORRUPT

PICO_KERNEL_DRIVER_TOO_OLD

PICO_FW_FAIL

PICO_MAX_UNITS_OPENED

PICO_NOT_FOUND

PICO_NOT_RESPONDING

USB DrDAQ Programmer's Guide 21

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved. usbdrdaqpg.en r9

3.14 UsbDrDaqOpenUnitAsync - open the unit without
waiting for completion

PICO_STATUS UsbDrDaqOpenUnitAsync

(

int16_t * status

)

This function opens a USB DrDAQ data logger without waiting for the operation to finish. You can find out when it

has finished by periodically calling UsbDrDaqOpenUnitProgress() until that function returns a non-zero
value and a valid data logger handle.

The driver can support up to 64 data loggers.

Arguments

status: on exit, a status flag:

0 if there is already an open operation in progress

1 if the open operation is initiated

Returns

PICO_OK

PICO_OPEN_OPERATION_IN_PROGRESS

PICO_OPERATION_FAILED

USB DrDAQ API functions22

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved.usbdrdaqpg.en r9

3.15 UsbDrDaqOpenUnitProgress - report progress of
UsbDrDaqOpenUnitAsync

PICO_STATUS UsbDrDaqOpenUnitProgress

(

int16_t * handle,

int16_t * progress,

int16_t * complete

)

This function checks on the progress of UsbDrDaqOpenUnitAsync().

Arguments

* handle: on exit, the device identifier of the opened data logger, if the operation was successful. Use this as

the handle parameter when calling any other USB DrDAQ API function.

0: if no unit is found or the unit fails to open

<>0: handle of unit (valid only if function returns PICO_OK)

progress: on exit, an estimate of the progress towards opening the data logger. The value is between 0 to 100.

complete: on exit, a non-zero value if the operation has completed, otherwise zero.

Returns

PICO_OK

PICO_NULL_PARAMETER

PICO_OPERATION_FAILED

USB DrDAQ Programmer's Guide 23

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved. usbdrdaqpg.en r9

3.16 UsbDrDaqPhTemperatureCompensation - select pH
temperature compensation

PICO_STATUS UsbDrDaqPhTemperatureCompensation

(

int16_t handle,

uint16_t enabled

)

This function specifies whether or not to use the built-in thermistor to temperature-compensate the pH input. If
the thermistor is at the same temperature as the pH sensor, this will produce more accurate pH readings.

Arguments

handle: device identifier returned from UsbDrDaqOpenUnit() or UsbDrDaqOpenUnitProgress().

enabled: 1 to enable, 0 to disable.

Returns

PICO_OK

PICO_NULL_PARAMETER

PICO_OPERATION_FAILED

USB DrDAQ API functions24

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved.usbdrdaqpg.en r9

3.17 UsbDrDaqPingUnit - check that a device is
connected

PICO_STATUS UsbDrDaqPingUnit

(

int16_t * handle

)

This function checks that the specified USB DrDAQ is connected.

Arguments

handle: device identifier returned from UsbDrDaqOpenUnit() or UsbDrDaqOpenUnitProgress().

Returns

PICO_OK

PICO_NOT_RESPONDING

PICO_BUSY

PICO_DRIVER_FUNCTION

PICO_NOT_FOUND

USB DrDAQ Programmer's Guide 25

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved. usbdrdaqpg.en r9

3.18 UsbDrDaqReady - indicate when UsbDrDaqRun has
captured data

PICO_STATUS UsbDrDaqReady

(

int16_t handle,

int16_t * ready

)

This function indicates when UsbDrDaqRun() has captured the requested number of samples.

Arguments

handle: device identifier returned from UsbDrDaqOpenUnit() or UsbDrDaqOpenUnitProgress().

ready: nonzero if ready, zero otherwise.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_NOT_RESPONDING

USB DrDAQ API functions26

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved.usbdrdaqpg.en r9

3.19 UsbDrDaqRun - tell unit to start capturing data
PICO_STATUS UsbDrDaqRun

(

int16_t handle,

uint32_t no_of_values,

BLOCK_METHOD method

)

This function tells the unit to start capturing data.

Arguments

handle: device identifier returned from UsbDrDaqOpenUnit() or UsbDrDaqOpenUnitProgress().

no_of_values: the number of samples that the unit should collect per channel.

At 1 MS/s in BM_SINGLE mode, the total for all active channels must not exceed 16 320 samples.
At lower sampling rates, the total for all active channels is limited to 1 000 010 samples.

method: which method to use to collect the data, from the following list:

BM_SINGLE

BM_WINDOW

BM_STREAM

See Capture modes for details.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_USER_CALLBACK

PICO_INVALID_CHANNEL

PICO_TOO_MANY_SAMPLES

PICO_INVALID_TIMEBASE

PICO_NOT_RESPONDING

PICO_CONFIG_FAIL

PICO_INVALID_PARAMETER

PICO_NOT_RESPONDING

PICO_TRIGGER_ERROR

USB DrDAQ Programmer's Guide 27

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved. usbdrdaqpg.en r9

3.20 UsbDrDaqSetDO - control the digital outputs
PICO_STATUS UsbDrDaqSetDO

(

int16_t handle,

USB_DRDAQ_GPIO IOChannel,

int16_t value

)

This function is used to configure the general-purpose I/Os as digital outputs.

Arguments

handle: device identifier returned from UsbDrDaqOpenUnit() or UsbDrDaqOpenUnitProgress().

IOChannel: identifies the channel. See Channel numbers.

value: any non-zero value sets the digital output and zero clears it.

Returns

PICO_OK

PICO_NOT_FOUND

PICO_NOT_RESPONDING

PICO_INVALID_PARAMETER

USB DrDAQ API functions28

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved.usbdrdaqpg.en r9

3.21 UsbDrDaqSetInterval - set sampling speed of the
unit (integer)

PICO_STATUS UsbDrDaqSetInterval

(

int16_t handle,

uint32_t * us_for_block,

uint32_t ideal_no_of_samples,

USB_DRDAQ_INPUTS * channels,

int16_t no_of_channels

)

This function sets the sampling interval of the unit. Sampling of multiple channels is sequential.

The minimum possible sampling interval (si_min, in microseconds) depends on the capture mode and number

of active channels (n) as follows:

· BM_SINGLE mode:

si_min = n

· BM_WINDOW and BM_STREAM modes:

si_min = 10*n

If you wish to know the effective sampling interval (si, in microseconds) set by this function, you can calculate it
as follows:

si = us_for_block / (ideal_no_of_samples * no_of_channels)

Arguments

handle: device identifier returned from UsbDrDaqOpenUnit() or UsbDrDaqOpenUnitProgress().

us_for_block: on entry, the target total time in which to collect ideal_no_of_samples *

no_of_channels, in microseconds. On exit, the actual total time that was set.

For more accurate setting of total time as a floating-point value, use UsbDrDaqSetIntervalF().

ideal_no_of_samples: the number of samples per channel that you want to collect. This number is used only
for timing calculations.

At 1 MS/s in BM_SINGLE mode, the total for all active channels must not exceed 16 320 samples.
At lower sampling rates, the total for all active channels is limited to 1 000 010 samples.

channels: an array of constants identifying the channels from which you wish to capture data. See the list at
Channel numbers. If you specify the channels in a different order from that shown in that list, the function will
reorder them.

no_of_channels: the number of channels in the channels array.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_INVALID_CHANNEL

PICO_INVALID_TIMEBASE

PICO_NOT_RESPONDING

PICO_CONFIG_FAIL

PICO_INVALID_PARAMETER

PICO_NOT_RESPONDING

USB DrDAQ Programmer's Guide 29

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved. usbdrdaqpg.en r9

PICO_TRIGGER_ERROR

USB DrDAQ API functions30

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved.usbdrdaqpg.en r9

3.22 UsbDrDaqSetIntervalF - set sampling speed of the
unit (floating-point)

PICO_STATUS UsbDrDaqSetIntervalF

(

int16_t handle,

float * us_for_block,

uint32_t ideal_no_of_samples,

USB_DRDAQ_INPUTS * channels,

int16_t no_of_channels

)

This function sets the sampling interval of the unit. It works in the same way as UsbDrDaqSetInterval()

except that the us_for_block argument is a float instead of an integer.

USB DrDAQ Programmer's Guide 31

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved. usbdrdaqpg.en r9

3.23 UsbDrDaqSetPWM - configure general-purpose I/Os
as pulse-width modulation outputs

PICO_STATUS UsbDrDaqSetPWM

(

int16_t handle,

USB_DRDAQ_GPIO IOChannel,

uint16_t period,

uint8_t cycle

)

This function is used to configure the general-purpose I/Os as pulse-width modulation outputs.

Arguments

handle: device identifier returned from UsbDrDaqOpenUnit() or UsbDrDaqOpenUnitProgress().

IOChannel: GPIOs 1 and 2 can be used as PWM outputs. See UsbDrDaqSetDO() for values.

period: the period of the waveform in microseconds.

cycle: duty cycle as a percentage.

Returns

PICO_OK

PICO_NOT_FOUND

PICO_NOT_RESPONDING

PICO_INVALID_PARAMETER

USB DrDAQ API functions32

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved.usbdrdaqpg.en r9

3.24 UsbDrDaqSetRGBLED - set color of LED in RGB
mode

PICO_STATUS UsbDrDaqSetRGBLED

(

int16_t handle,

uint16_t red,

uint16_t green,

uint16_t blue

)

This function is used to set the color of the LED once RGB mode has been enabled using

USBDRDaqEnableRGBLED().

Arguments

handle: device identifier returned from UsbDrDaqOpenUnit() or UsbDrDaqOpenUnitProgress().

red, green, blue: components of the required LED color, in the range 0 to 255.

Returns

PICO_OK

PICO_NOT_FOUND

PICO_NOT_RESPONDING

USB DrDAQ Programmer's Guide 33

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved. usbdrdaqpg.en r9

3.25 UsbDrDaqSetScalings - set the scaling for a channel
PICO_STATUS UsbDrDaqSetScalings

(

int16_t handle

USB_DRDAQ_INPUTS channel,

int16_t scalingNumber

)

This function sets the scaling for a specified channel. Having set a scaling, you can verify it by calling

UsbDrDaqGetChannelInfo().

Arguments

handle: device identifier returned from UsbDrDaqOpenUnit() or UsbDrDaqOpenUnitProgress().

channel: the channel to set. See Channel numbers.

scalingNumber: the number of the required scale, as given by UsbDrDaqGetScalings().

Returns

PICO_OK

PICO_NOT_FOUND

PICO_INVALID_CHANNEL

PICO_INVALID_PARAMETER

USB DrDAQ API functions34

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved.usbdrdaqpg.en r9

3.26 UsbDrDaqSetSigGenArbitrary - control the arbitrary
waveform generator

PICO_STATUS UsbDrDaqSetSigGenArbitrary

(

int16_t handle,

int32_t offsetVoltage,

uint32_t pkToPk,

int16_t * arbitraryWaveform,

int16_t arbitraryWaveformSize,

int32_t updateRate

)

This function allows full control of the arbitrary waveform generator by allowing an arbitrary waveform to be
passed to the driver.

Arguments

handle: device identifier returned from UsbDrDaqOpenUnit() or UsbDrDaqOpenUnitProgress().

offsetVoltage: the offset voltage in microvolts. The offset voltage must be in the range –1.5 V to 1.5 V.

pkToPk: the peak-to-peak voltage in microvolts. The maximum allowed is 3 V.

arbitraryWaveform: an array containing the waveform. The waveform values must be in the range –1000 to
1000.

arbitraryWaveformSize: the number of points in the waveform.

updateRate: the rate at which the AWG steps through the points in the waveform. This value must be in the
range 1 to 2,000,000 points per second.

Returns

PICO_OK

PICO_NOT_FOUND

PICO_NOT_RESPONDING

PICO_INVALID_PARAMETER

USB DrDAQ Programmer's Guide 35

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved. usbdrdaqpg.en r9

3.27 UsbDrDaqSetSigGenBuiltIn - set the arbitrary
waveform generator using standard waveform types

PICO_STATUS UsbDrDaqSetSigGenBuiltIn

(

int16_t handle,

int32_t offsetVoltage,

uint32_t pkToPk,

int16_t frequency,

USB_DRDAQ_WAVE waveType

)

This function sets the arbitrary waveform generator using standard waveform types.

Arguments

handle: device identifier returned from UsbDrDaqOpenUnit() or UsbDrDaqOpenUnitProgress().

offsetVoltage: the offset voltage in microvolts. The offset voltage must be in the range –1.5 V to 1.5 V.

pkToPk: the peak-to-peak voltage in microvolts. The maximum allowed is 3 V.

frequency: frequency in hertz. The maximum allowed frequency is 20 kHz.

waveType: an enumerated data type that has the following values corresponding to standard waveforms:

USB_DRDAQ_SINE

USB_DRDAQ_SQUARE

USB_DRDAQ_TRIANGLE

USB_DRDAQ_RAMP_UP

USB_DRDAQ_RAMP_DOWN

USB_DRDAQ_DC

Returns

PICO_OK

PICO_NOT_FOUND

PICO_NOT_RESPONDING

PICO_INVALID_PARAMETER

USB DrDAQ API functions36

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved.usbdrdaqpg.en r9

3.28 UsbDrDaqSetTrigger - set up the trigger
PICO_STATUS UsbDrDaqSetTrigger

(

int16_t handle,

uint16_t enabled,

uint16_t auto_trigger,

uint16_t auto_ms,

uint16_t channel,

uint16_t dir,

int16_t threshold,

uint16_t hysteresis,

float delay

)

This function sets up the trigger, which controls when the unit starts capturing data.

Arguments

handle: device identifier returned from UsbDrDaqOpenUnit() or UsbDrDaqOpenUnitProgress().

enabled: whether to enable or disable the trigger:
0: disable the trigger
1: enable the trigger

auto_trigger: whether or not to rearm the trigger automatically after each trigger event:
0: do not auto-trigger
1: auto-trigger

auto_ms: time in milliseconds after which the unit will auto-trigger if the trigger condition is not met

channel: which channel to trigger on. See Channel numbers.

dir: which edge to trigger on:
0: rising edge
1: falling edge

threshold: trigger threshold (the level at which the trigger will activate) in the currently selected scaling,
multiplied to remove any decimal places. The number of decimal places can be found by calling

UsbDrDAQGetChannelInfo().

hysteresis: trigger hysteresis in ADC counts. This is the difference between the upper and lower thresholds.
The signal must then pass through both thresholds in the same direction in order to activate the trigger, so that
there are fewer unwanted trigger events caused by noise. The minimum value allowed is 1.

delay: delay between the trigger event and the start of the block as a percentage of the block size. 0% means
that the trigger event is the first data value in the block, and –50% means that the trigger event is in the middle of
the block.

Returns

PICO_OK

PICO_INVALID_HANDLE

PICO_USER_CALLBACK

PICO_TRIGGER_ERROR

PICO_MEMORY_FAIL

USB DrDAQ Programmer's Guide 37

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved. usbdrdaqpg.en r9

3.29 UsbDrDaqStartPulseCount - use general-purpose
I/Os for pulse counting

PICO_STATUS UsbDrDaqStartPulseCount

(

int16_t handle,

USB_DRDAQ_GPIO IOChannel,

int16_t direction

)

This function is used to configure the general-purpose I/Os for pulse counting and to start counting.

Arguments

handle: device identifier returned from UsbDrDaqOpenUnit() or UsbDrDaqOpenUnitProgress().

IOChannel: specifies the GPIO channel to use, either GPIO 1 or GPIO 2. See Channel numbers.

direction: the direction of the edges to count (0: rising, 1: falling).

Returns

PICO_OK

PICO_NOT_FOUND

PICO_NOT_RESPONDING

PICO_INVALID_PARAMETER

USB DrDAQ API functions38

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved.usbdrdaqpg.en r9

3.30 UsbDrDaqStop - abort data collection
PICO_STATUS UsbDrDaqStop

(

int16_t handle

)

This function aborts data collection. It is normally used in streaming mode to stop capturing data. It can also be
used to interrupt a block mode capture, but in this case all the data will be invalid.

Arguments

handle: device identifier returned from UsbDrDaqOpenUnit() or UsbDrDaqOpenUnitProgress().

Returns

PICO_OK

PICO_INVALID_HANDLE

USB DrDAQ Programmer's Guide 39

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved. usbdrdaqpg.en r9

3.31 UsbDrDaqStopSigGen - turn AWG off
PICO_STATUS UsbDrDaqStopSigGen

(

int16_t handle

)

This function turns the AWG off.

Arguments

handle: device identifier returned from UsbDrDaqOpenUnit() or UsbDrDaqOpenUnitProgress().

Returns

PICO_OK

PICO_NOT_FOUND

PICO_NOT_RESPONDING

USB DrDAQ API functions40

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved.usbdrdaqpg.en r9

3.32 Channel numbers
Use the following values for the channel argument in those API functions that deal with a specified input
channel or channels:

typedef enum enUsbDrDaqInputs

{

 USB_DRDAQ_CHANNEL_EXT1 = 1, //Ext. sensor 1 1

 USB_DRDAQ_CHANNEL_EXT2, //Ext. sensor 2 2

 USB_DRDAQ_CHANNEL_EXT3, //Ext. sensor 3 3

 USB_DRDAQ_CHANNEL_SCOPE, //Scope channel 4

 USB_DRDAQ_CHANNEL_PH, //pH 5

 USB_DRDAQ_CHANNEL_RES, //Resistance 6

 USB_DRDAQ_CHANNEL_LIGHT, //Light 7

 USB_DRDAQ_CHANNEL_TEMP, //Thermistor 8

 USB_DRDAQ_CHANNEL_MIC_WAVE, //Microphone waveform 9

 USB_DRDAQ_CHANNEL_MIC_LEVEL, //Microphone level 10

 USB_DRDAQ_MAX_CHANNELS = USB_DRDAQ_CHANNEL_MIC_LEVEL

} USB_DRDAQ_INPUTS;

Use the following values for the IOChannel argument in the API functions that deal with a specified GPIO
channel:

typedef enum enUsbDrDaqDO

{

USB_DRDAQ_GPIO_1 = 1, // 1

USB_DRDAQ_GPIO_2, // 2

USB_DRDAQ_GPIO_3, // 3

USB_DRDAQ_GPIO_4 // 4

} USB_DRDAQ_GPIO;

Source: usbDrDaqApi.h 2013-01-22

3.33 PICO_STATUS values
Every function in the USB DrDAQ API returns a status code from the list of PICO_STATUS values in

PicoStatus.h.

USB DrDAQ Programmer's Guide 41

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved. usbdrdaqpg.en r9

4 Glossary

Driver. A program that controls a piece of hardware. The driver for the USB DrDAQ is supplied in the form of 32-bit

and 64-bit versions of a Windows DLL, UsbDrDaq.dll. This is used by your application to control the data
logger.

Sampling interval. The time interval between samples as the USB DrDAQ acquires data. The sampling interval

can be set to any value returned by UsbDrDaqSetInterval() and UsbDrDaqSetIntervalF().

USB 2.0. Universal Serial Bus. This is a standard port that enables you to connect external devices to PCs. A full-
speed USB 2.0 port operates at up to 480 megabits per second. The PicoLog 1000 Series is also compatible with
any USB port from USB 1.1 upwards.

Voltage range. The range of input voltages that the oscilloscope can measure. For example, a voltage range of
±100 mV means that the oscilloscope can measure voltages between –100 mV and +100 mV. Input voltages
outside this range will not damage the instrument as long as they remain within the protection limits stated in the
Specifications table in the User's Guide.

USB DrDAQ Programmer's Guide 43

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved. usbdrdaqpg.en r9

Index

A
Arbitrary waveform generator 34, 35

Asynchronous operation 3

B
BM_SINGLE mode 3

BM_STREAM mode 3

BM_WINDOW mode 3

C
Capture modes

BM_SINGLE 3

BM_STREAM 3

BM_WINDOW 3

Channel information, obtaining 10

Channel numbers 40

Closing a unit 8

Connecting to the PC 3

D
Data, reading 14, 15, 18, 19

Device information, obtaining 17

Device status, querying 25

Digital inputs 11

Digital outputs 27

DLLs 3

Driver routines

list of 7

UsbDrDaqCloseUnit 8

UsbDrDaqEnableRGBLED 9

UsbDrDaqGetChannelInfo 10

UsbDrDaqGetInput 11

UsbDrDaqGetPulseCount 12

UsbDrDaqGetScalings 13

UsbDrDaqGetSingle 14

UsbDrDaqGetSingleF 15

UsbDrDaqGetTriggerTimeOffsetNs 16

UsbDrDaqGetUnitInfo 17

UsbDrDaqGetValues 18

UsbDrDaqGetValuesF 19

UsbDrDaqOpenUnit 20

UsbDrDaqOpenUnitAsync 21

UsbDrDaqOpenUnitProgress 22

UsbDrDaqPhTemperatureCompensation 23

UsbDrDaqPingUnit 24

UsbDrDaqReady 25

UsbDrDaqRun 26

UsbDrDaqSetDO 27

UsbDrDaqSetInterval 28

UsbDrDaqSetIntervalF 30

UsbDrDaqSetPWM 31

UsbDrDaqSetRGBLED 32

UsbDrDaqSetScalings 33

UsbDrDaqSetSigGenArbitrary 34

UsbDrDaqSetSigGenBuiltIn 35

UsbDrDaqSetTrigger 36

UsbDrDaqStartPulseCount 37

UsbDrDaqStop 38

UsbDrDaqStopSigGen 39

E
Example code 3

I
Information on device, obtaining 17

Installation 3

L
LED 9, 32

Legal information 1

N
New Hardware Wizard 3

O
Opening a device 20, 21, 22

P
pH temperature compensation 23

PICO_STATUS 40

Programming 3

Pulse counter 12, 37

PWM outputs, setting up 31

Q
Querying a device 24

R
Running a device 26

Index44

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved.usbdrdaqpg.en r9

S
Sampling interval, setting 28, 30

Scaling

files 4

querying 13

setting 33

Signal generator

configuring 35

stopping 39

Software updates 2

Stopping a unit 38

Streaming 3

T
Trademarks 2

Trigger

configuring 36

reading times 16

U
USB DrDAQ 1

W
Windows

64-bit 3

WoW64 3

XP/Vista/7/8 support 3

Pico Technology
James House
Colmworth Business Park
St. Neots
Cambridgeshire
PE19 8YP
United Kingdom

Copyright © 2010–2019 Pico Technology Ltd. All rights reserved.

usbdrdaqpg.en r9 2019-11-18

Pico Technology
320 N Glenwood Blvd
Tyler
Texas 75702
United States

Pico Technology
Room 2252, 22/F, Centro
568 Hengfeng Road
Zhabei District
Shanghai 200070
PR China

sales@picotech.com
support@picotech.com

pico.china@picotech.com

Asia-Pacific regional
office:

Tel: +44 (0) 1480 396 395

USA regional office:UK headquarters:

Tel: +1 800 591 2796 Tel: +86 21 2226-5152

www.picotech.com

sales@picotech.com
support@picotech.com

	Introduction
	Overview
	License agreement
	Trademarks
	Software updates

	Writing your own software
	About the driver
	Installing the driver
	Example code
	Connecting the logger
	Capture modes
	USB DrDAQ scaling files (.DDS)

	USB DrDAQ API functions
	UsbDrDaqCloseUnit - close the unit
	UsbDrDaqEnableRGBLED - enable or disable RGB mode on the LED
	UsbDrDaqGetChannelInfo - return information about the scaling in use on a channel
	UsbDrDaqGetInput - use the general-purpose I/Os as digital inputs
	UsbDrDaqGetPulseCount - return the current pulse count
	UsbDrDaqGetScalings - discover the scalings, both built-in and custom, that are available
	UsbDrDaqGetSingle - get a single value from a specified channel
	UsbDrDaqGetSingleF - get a single floating-point value
	UsbDrDaqGetTriggerTimeOffsetNs - return jitter-correction parameter
	UsbDrDaqGetUnitInfo - return information about the unit
	UsbDrDaqGetValues - get sample values after a run
	UsbDrDaqGetValuesF - get floating-point values after a run
	UsbDrDaqOpenUnit - open and enumerate the unit
	UsbDrDaqOpenUnitAsync - open the unit without waiting for completion
	UsbDrDaqOpenUnitProgress - report progress of UsbDrDaqOpenUnitAsync
	UsbDrDaqPhTemperatureCompensation - select pH temperature compensation
	UsbDrDaqPingUnit - check that a device is connected
	UsbDrDaqReady - indicate when UsbDrDaqRun has captured data
	UsbDrDaqRun - tell unit to start capturing data
	UsbDrDaqSetDO - control the digital outputs
	UsbDrDaqSetInterval - set sampling speed of the unit (integer)
	UsbDrDaqSetIntervalF - set sampling speed of the unit (floating-point)
	UsbDrDaqSetPWM - configure general-purpose I/Os as pulse-width modulation outputs
	UsbDrDaqSetRGBLED - set color of LED in RGB mode
	UsbDrDaqSetScalings - set the scaling for a channel
	UsbDrDaqSetSigGenArbitrary - control the arbitrary waveform generator
	UsbDrDaqSetSigGenBuiltIn - set the arbitrary waveform generator using standard waveform types
	UsbDrDaqSetTrigger - set up the trigger
	UsbDrDaqStartPulseCount - use general-purpose I/Os for pulse counting
	UsbDrDaqStop - abort data collection
	UsbDrDaqStopSigGen - turn AWG off
	Channel numbers
	PICO_STATUS values

	Glossary

