

287/289 True-rms Digital Multimeters

Uživatelská příručka

June 2007, Rev. 2, 3/09 (Czech) © 2007, 2008, 2009 Fluke Corporation. All rights reserved. Specifications subject to change without notice. All product names are trademarks of their respective companies.

http://www.elso.sk

Doživotní omezená záruka

Všechny přístroje Fluke 20, 70, 80, 170, 180 a 280 série DMM budou po celou dobu své životnosti bez vad materiálu a zpracování. Termín "doživotní", ve smyslu, v jakém je zde použiť, je definován jako sedm let od data, kdy společnost Fluke ukončí výrobu výrobku, avšak záruční doba musí být alespoň deset let od data nákupu. Tato záruka se nevztahuje na pojistky, baterie na jedno použití, poškození z nedbalosti, nesprávné použití, kontaminaci, pozměnění, nehodu, abnormální podmínky provozu nebo manipulace, včetně poruch, způsobených použitím výrobku v rozporu se specifikacemi výrobku, nebo běžné opotřebení mechanických komponentů. Tato záruka se vztahuje pouze na původního kupce a je nepřenosná.

Tato záruka se po dobu deseti let od data nákupu vztahuje také na LCD. Po uplynutí této lhůty, po dobu životnosti DMM, vymění společnost Fluke LCD za poplatek, vycházející z aktuálních nákladů na nákup komponenty.

Jako důkaz původního vlastnictví a data nákupu vyplňte a vraťte registrační kartu, přiloženou k výrobku nebo svůj výrobek zaregistrujte na http://www.fluke.com. Společnost Fluke dle svého rozhodnutí zdarma opraví, vymění nebo uhradí nákupní cenu vadného výrobku, zakoupeného prostřednictvím svého autorizovaného prodejního místa a za příslušnou mezinárodní cenu. Společnost Fluke si vyhrazuje právo účtovat náklady na dovezení dílu pro opravu nebo výměnu, pokud je výrobek předložen k opravě v jiné zemi, než kde byl zakoupen.

Pokud je výrobek vadný, obraťte se na nejbližší autorizované servisní středisko společnosti Fluke pro informace o oprávnění k vrácení, potom do servisního střediska zašlete produkt s popisem potíží, s předplaceným poštovným a pojištěním (vyplaceně do místa určení). Společnost Fluke nepřebírá riziko za poškození při dopravě. Společnost Fluke uhradí dopravu opraveného nebo vyměněného výrobku v záruce. Společnost Fluke odhadne před provedením nezáruční opravy náklady a nechá si je odsouhlasit, následně vám vystaví fakturu za opravu a dopravu zpět.

TATO ZÁRUKA JE VAŠÍM JEDINÝM OPRAVNÝM PROSTŘEDKEM. ŽÁDNÉ DALŠÍ ZÁRUKY, JAKO VHODNOST PRO KONKRÉTNÍ ÚČEL, TÍM NEJSOU VYJÁDŘENY ANI ODVOZENY. SPOLEČNOST FLUKE NEODPOVÍDÁ ZA ŽÁDNÉ ZVLÁŠTNÍ, NEPŘÍMÉ, NÁHODNÉ NEBO NÁSLEDNÉ ŠKODY NEBO ZTRÁTY, VČETNĚ ZTRÁTY DAT, VZNIKLÉ Z JAKÉKOLIV PŘÍČINY NEBO PŘEDPOKLADU. AUTORIZOVANÍ MALOOBCHODNÍCI NEJSOU OPRÁVNĚNI POSKYTOVAT JMÉNEM SPOLEČNOSTI FLUKE JAKÉKOLI JINÉ ZÁRUKY. Jelikož některé státy nepřipouštějí vyloučení nebo omezení vyplývající záruky nebo náhodných nebo následných škod, nemusí se na vás toto omezení odpovědnosti vztahovat. Je-li kterékoliv ustanovení této záruky shledáno neplatným nebo nevynutitelným soudem nebo jinou rozhodovací autoritou příslušné jurisdikce, není tím dotčena platnost nebo vynutitelnost jakéhokoliv jiného ustanovení.

Fluke Corporation	Fluke Europe B.V.
P.O. Box 9090	P.O. Box 1186
Everett, WA 98206-9090	5602 BD Eindhoven
U.S.A.	The Netherlands

Obsah

Nadpis

Strana

Úvod	1
Kontakt na společnost Fluke	1
Bezpečnostní pokyny	1
Nebezpečné napětí	3
Symboly	4
Funkce	5
Popis tlačítek	5
Použití automatického opakování	6
Popis displeje	7
Stupnice	8
Prvky stavové lišty	8
Hlavní oblast	9
Značky softwarového tlačítka	9
Seřízení kontrastu displeje	9
Popis otočného přepínače	10
Použití vstupních kontaktů	11
Řízení napájení měřicího přístroje	12

riešenia na presne

Manuální zapínání a vypínání měřicího přístroje	12
Indikátor stavu baterií	12
Automatické vypnutí	12
Režim úspory baterií	12
Ovládání podsvícení	13
Výběr rozsahu	13
Popis nabídky funkcí	13
Funkce Input Alert™ (Výstraha vstupu)	15
Použití tlačítka Info	15
Režimy Hold a AutoHold	15
Měření činitele amplitudy	16
Záznam minimálních a maximálních hodnot	16
Záznam hodnot špiček	18
Filtr propouštějící pouze nízké kmitočty (pouze model 289)	20
Provádění relativních měření	21
Měření	22
Měření střídavého napětí	22
Použití LoZ pro měření napětí (pouze Model 289)	23
Provádění měření dB	23
Měření stejnosměrného napětí	25
Měření AC a DC signálů	26
Měření teploty	28
Použití funkce 50 Ω (pouze model 289)	31
Zkoušení průchodnosti	31
Použití vodivosti pro zkoušky vysokého odporu	34
Měření kapacitance	35
Zkoušení diod	36
Měření proudu	38

Měření frekvence	42
Měření činitele využití	43
Měření šířky impulsu	45
Možnosti změny nastavení měřicího přístroje	47
Možnosti obnovení nastavení měřicího přístroje	47
Nastavení kontrastu displeje	47
Nastavení jazyka měřicího přístroje	47
Nastavení data a času	48
Nastavení doby podsvícení a automatického vypnutí	48
Nastavení vlastní reference dBm	48
Deaktivace a aktivace bzučáku	48
Aktivace a deaktivace režimu vyhlazování	49
Použití dalších voleb nastavení	49
Využití paměti	49
Ukládání jednotlivých dat měření	49
Pojmenování uložených dat	50
Prohlížení dat z paměti	50
Prohlížení snímků a souhrnných dat	50
Prohlížení dat trendů	51
Přiblížení v datech trendu	52
Mazání uložených dat měření	52
Záznam dat měření	52
Nastavení relace záznamu	54
Nastavení relace záznamu	54
Nastavení prahové hodnoty události	55
Zahájení relace záznamu	55
Zastavení relace záznamu	55
Používání komunikace	56

\square	Chybové Údržba
	Obecr
////	🔊 Zkouš
	Výmě
	Výmě
	Ulože
	V případe
chi0	Servis a
150	Všeobec
	Podrobne

Chybové zprávy	57
Údržba	58
Obecná údržba	58
Zkoušení pojistek	58
Výměna baterií	60
Výměna pojistek	60
Uložení měřících vodičů	60
V případě potíží	62
Servis a náhradní díly	63
Všeobecné specifikace	67
Podrobné specifikace	68
Parametry střídavého napětí	69
Parametry střídavého proudu	70
Parametry stejnosměrného napětí	71
Parametry stejnosměrného proudu	72
Parametry odporu	73
Parametry teploty	73
Parametry zkoušení kapacitance a diod	74
Parametry měřiče frekvence	75
Citlivost měřiče frekvence	76
Parametry MIN MAX, záznamu a špičky	77
Parametry vstupu	78
Zátěžové napětí (A, mA, μA)	79

Seznam tabulek

Tabulka

Nadpis

Strana

1.	Symboly	4
2.	Tlačítka	5
3.	Funkce displeje	7
4.	Pozice otočného přepínače	10
5.	Vstupní kontakty	11
6.	Indikátor stavu baterií	12
8.	Zobrazení záznamu	54
9.	Zobrazení zastavení záznamu	56
10.	Chybové zprávy	57
11.	Náhradní díly	63
12.	Příslušenství	66

sterie no presnet

Seznam obrázků

Obrázek

Nadpis

Strana

1.	Tlačítka	5
2.	Funkce displeje	7
3.	Otočný přepínač	10
4.	Vstupní zdířky	11
5.	Nabídka funkcí	14
6.	Displej záznamu MIN MAX	17
7.	Displej záznamu špičky	18
8.	Filtr propouštějící pouze nízké kmitočty	20
9.	Funkce relativního režimu	21
10.	Měření střídavého napětí	22
11.	Zobrazení dBm	23
12.	Měření stejnosměrného napětí	25
13.	Zobrazení AC a DC	26
14.	Měření teploty	28
15.	Měření odporu	30
16.	Indikátor průchodnosti	31
17.	Zkoušení průchodnosti	32

	18.	Měření vodivosti	34
	19.	Měření kapacitance	35
	20.	Zkoušení diod	37
	21.	Nastavení měření proudu	40
	22.	Zapojení obvodu pro měření proudu	41
	23.	Funkce umožňující měření frekvence	42
/ (('))	24.	Zobrazení frekvence	43
	25.	Měření činitele využití	44
Silo I	26.	Zobrazení činitele využití	45
	27.	Měření šířky impulzu	46
-C	7.	Zobrazení dat trendu	51
	28.	Zkoušení tavných pojistek	59
	29.	Skladování měřících vodičů	60
	30.	Výměna baterií a pojistek	61
	31.	Vyměnitelné díly	65

Úvod

A∆Výstraha

Před použítím tohoto měřicího přístroje si přečtěte "Bezpečnostní pokyny".

Popis a pokyny v této příručce se vztahují k modelu 289 a modelu 287 digitálních Multimetrů True-rms (True-rms Digital Multimeters) (dále jen měřicí přístroj). Na všech ilustracích je vyobrazen model 289.

Kontakt na společnost Fluke

Pro kontakt se společností Fluke volejte:

USA: 1-888-993-5853 Kanada: 1-800-363-5853 Evropa: +31 402-675-200 Japonsko: +81-3-3434-0181 Singapur: +65-738-5655 Kdekoliv na světě: +1-425-446-5500

Navštivte webovou stránku Fluke na adrese: www.fluke.com

Registrujte svůj měřicí přístroj na adrese: http://register.fluke.com

Chcete-li zobrazit, vytisknout nebo stáhnout nejnovější dodatek k návodu, navštivte webovou stránku http://us.fluke.com/usen/support/manuals.

Bezpečnostní pokyny

Měřicí přístroj je v souladu s:

- ANSI/ISA 82.02.01 (61010-1) 2004
- UL 61010B (2003)
- CAN/CSA-C22.2 No. 61010-1-04
- IEC/EN 61010-1 2. vydání pro stupeň znečištění 2
- EMC EN 61326-1
- Kategorie měřidla III, 1000 V, stupeň znečištění 2
- Kategorie měřidla IV, 600 V, stupeň znečištění 2

V této příručce **Výstraha** upozorňuje na nebezpečné podmínky a činnosti, které mohou mít za následek ublížení na zdraví nebo smrt. **Upozornění** upozorňuje na podmínky a činnosti, které mohou vést k poškození měřicího přístroje, zkoušeného zařízení, nebo způsobit trvalou ztrátu dat.

∕∆∆Výstraha

Abyste předešli úrazu elektrickým proudem nebo zranění osob, dodržujte následující pokyny:

- V případě, že nebudete používat měřicí přístroj podle pokynů v této příručce, může dojít k narušení ochrany poskytované měřicím přístrojem.
- Pokud je měřicí přístroj poškozený, nepoužívejte jej. Než měřicí přístroj použijete, zkontrolujte jeho pouzdro. Hledejte praskliny nebo chybějící části plastu. Zvláštní pozornost věnujte izolaci okolo konektorů.

- Než měřicí přístroj použijete, ujistěte se, že je kryt přihrádky na baterie zavřený a zajištěný.
- Než otevřete kryt přihrádky na baterie, odstraňte měřící vodiče.
- Zkontrolujte, zda není u měřících vodičů poškozená izolace nebo obnažený kov.
 Zkontrolujte průchodnost měřicích vodičů. Než budete měřicí přístroj používat, vyměňte poškozené měřicí vodiče.
- Mezi kontakty nebo mezi kontakt a uzemnění nepřipojujte větší než jmenovité napětí vyznačené na měřicím přístroji.
- Měřicí přístroj nikdy nepoužívejte, pokud je odstraněn kryt nebo otevřené pouzdro.
- Při práci s efektivním střídavým napětím nad 30 V rms, střídavým napětím 60 V ve špičkách, nebo stejnosměrným napětím 42 V dbejte zvýšené opatrnosti. Tato napětí představují nebezpečí úrazu elektrickým proudem.
- Pro výměnu používejte pouze pojistky, stanovené výrobcem v této příručce.
- Pro měření používejte příslušné kontakty, funkce a rozsahy.
- Nepracujte o samotě.
- Při měření proudu odpojte napájení obvodu před připojením měřicího přístroje. Nezapomeňte připojit měřicí přístroj k obvodu sériově.

- Při uzavírání elektrického obvodu připojte před připojením měřícího vodiče pod proudem běžný měřící vodič; při odpojování odpojte před odpojením běžného měřící vodiče měřící vodič pod proudem.
- Měřicí přístroj nepoužívejte, pokud nefunguje normálně. Může být porušená ochrana. Při pochybách odevzdejte měřicí přístroj do opravy.
- Nepoužívejte měřicí přístroj v prostředí výbušných plynů, par nebo prachu.
- Pro napájení měřicího přístroje používejte pouze baterie 1,5 V AA, vložené správným způsobem do přihrádky měřicího přístroje.
- Při opravách měřicího přístroje používejte pouze stanovené náhradní díly.
- Při používání sond mějte vždy prsty za chránítky sond.
- Nepoužívejte volbu Low Pass Filter (filtr propouštějící pouze nízké kmitočty) pro ověření přítomnosti nebezpečných napětí. Mohou být přítomna napětí vyšší, než jaká jsou indikována. Pro zjištění přítomnosti nebezpečného napětí změřte napětí nejprve bez filtru. Pak vyberte funkci filtru.
- Používejte pouze měřící vodiče s odpovídajícími parametry napětí, kategorie a proudu jako má měřicí přístroj a které byly schválené bezpečnostní agenturou.

- Při práci v nebezpečném prostředí používejte náležité ochranné prostředky, vyžadované místními nebo národními úřady.
- Při práci v nebezpečném prostředí dodržujte místní nebo národní bezpečnostní požadavky.
 - ▲ Upozornění

Abyste předešli poškození měřicího přístroje nebo zkoušeného zařízení, postupujte podle následujících pokynů:

- Než budete zkoušet odpor, průchodnost, diody nebo kapacitanci, odpojte napájení obvodu a vybijte všechny vysokonapěťové kondenzátory.
- Pro všechna měření používejte příslušné kontakty, funkce a rozsahy.

- Nevyjímejte baterie, pokud je měřicí přístroj zapnutý nebo pokud je k vstupním konektorům měřicího přístroje připojen signál.
- Před měřením proudu zkontrolujte pojistky měřicího přístroje. (Viz "Zkoušení pojistek" v uživatelské příručce na přiloženém CD.)
- Režim LoZ nepoužívejte k měření napětí v obvodech, které by mohly být poškozeny nízkou impedancí tohoto režimu (≈3 kΩ). (Pouze Model 289)

Nebezpečné napětí

Symbol 4 se zobrazí jako upozornění na přítomnost potenciálně nebezpečného napětí v případě, že měřicí přístroj zjistí napětí ≥30 V nebo přetížení napětí (OL).

Symboly

Tabulka 1 uvádí a popisuje symboly používané měřicím přístrojem a v této příručce. anie

Tabulka 1. Symboly

Symbol	Vysvětlivky	Symbol	Vysvětlivky
~/	AC (střídavý proud nebo napětí)	ф	Pojistka
-	DC (stejnosměrný proud nebo napětí)		Dvojnásobně izolovaný
	Nebezpečné napětí	\square	Důležité informace; viz příručka
	Baterie (Zobrazení na displeji značí nízké napětí baterie)	Ţ	Uzemnění
((ני	Zkouška průchodnosti nebo tón průchodnosti bzučáku	**************************************	Vyhovuje příslušným kanadským a americkým normám
CE	Vyhovuje nařízením Evropské unie	N10140	Vyhovuje příslušným australským normám
LISTED 950 Z	Zapsaný výrobek Underwriters Laboratory		Kontrolovaný a licencovaný společností TÜV Product Services
CAT III	Zařízení IEC Kategorie měřidla III - CAT III je konstruováno tak, aby chránilo proti přechodům v zařízení v pevných instalacích zařízení, jako jsou rozvodné panely, napáječe, krátké vedlejší okruhy a osvětlovací systémy velkých budov.	CAT IV	Zařízení IEC Kategorie měřidla IV - CAT IV je konstruováno tak, aby chránilo proti přechodům z úrovně primárního napájení, jako je měřidlo elektrické energie anebo nadzemní nebo podzemní rozvod.
X	Nevyhazujte tento výrobek do netříděného komunálního odpadu. Informace o recyklaci najdete na webové stránce společnosti Fluke.		

Funkce

Tabulky 2 až 5 stručně popisují funkce měřicího přístroje.

Popis tlačítek

Čtrnáct tlačítek umístěných na přední straně měřicího přístroje aktivuje funkce, rozšiřující funkce vybrané pomocí otočného přepínače, umožňuje procházet nabídky nebo řídit přívod proudu do obvodů měřicího přístroje. Tlačítka zobrazená na obrázku 1 jsou popsána v tabulce 2.

Obrázek 1. Tlačítka

Tabulka 2. Tlačítka

Tlačítko	Funkce		
0	Zapíná a vypíná měřicí přístroj.		
F1 F2 F3 F4	Vybírá podfunkce a režimy v závislosti funkci na otočném přepínači.		
	Kurzorová tlačítka pro výběr položky v nabídce, nastavení kontrastu displeje, listování v informacích a zadávání údajů.		
HOLD	Zmrazí aktuální odečet na displeji a umožňuje zobrazení uložit. Otevírá také AutoHold.		
RANGE	Přepíná režim rozsahu měřicího přístroje na manuální a pak umožňuje procházet všemi rozsahy. Pro návrat k automatickému rozsahu stiskněte na 1 sekundu tlačítko.		
MIN MAX	Spouští a zastavuje záznam MIN MAX.		
() info	Zobrazí na displeji informace o funkci nebo položce aktivní ve chvíli stisknutí tlačítka info.		
×	Přepíná podsvícení displeje mezi vypnuto, nízká a vysoká intenzita.		

Použití automatického opakování

Pro některé výběry v nabídce bude podržení softwarového tlačítka nebo kurzorové klávesy průběžně měnit (nebo posouvat) výběr, dokud nebude tlačítko uvolněno. Normálně každé stisknutí tlačítka způsobí změnu výběru o jeden krok. Během některých výběrů se bude výběr měnit rychleji, pokud tlačítko stisknete na dvě nebo více sekundy. Tato funkce je výhodná při listování v seznamu výběrů, jako je seznam uložených měření.

Popis displeje

Funkce displeje, vyobrazené na obrázku 2, jsou popsány v tabulce 3 a v následujících částech.

Tabulka 3. Funkce displeje

Položka	Funkce	Význam
1	Značky softwarového tlačítka	Uvádí funkci tlačítka přímo pod zobrazenou značkou.
2	Stupnice	Analogový zobrazení vstupního signálu (Více informací naleznete v části "Stupnice").
3	Relativní	Uvádí, že zobrazená hodnota souvisí s referenční hodnotou.
4	Znaménko minus	Označuje negativní hodnotu.
5	Blesk	Označuje nebezpečné napětí na vstupu do měřicího přístroje.
6	Vzdálená komunikace	Uvádí aktivitu na komunikačním připojení.
7	Stav baterie	Uvádí stav nabití šesti baterií AA.
8	Čas	Uvádí čas, nastavený ve vnitřních hodinách.
9	Signalizátory režimu	Uvádí režim měřicího přístroje.

Tabulka 3. Funkce displeje (pokr.)

Položka	Funkce	Význam
1	Mini zobrazení měření	Zobrazí blesk (v nutných případech) a vstupní hodnotu, pokud jsou primární a sekundární displeje zakryté nabídkou nebo automaticky otevíranou zprávou.
(1)	Datum	Uvádí datum, nastavené ve vnitřních hodinách.
(12)	Bzučák	Označuje aktivaci bzučáku měřicího přístroje (nesouvisí s bzučákem průchodnosti).
13	Jednotky	Uvádí jednotky měření.
(14)	Pomocné jednotky	Označuje bezjednotková měření jako je činitel amplitudy.
(15)	Indikátor rozsahu	Uvádí rozsah, do kterého je měřicí přístroj přepnut a režim volby rozsahu (automatický nebo manuální).
(16)	Sekundární displej	Zobrazuje sekundární informace o měření vstupního signálu.

Stupnice

Analogová stupnice funguje jako ručička na analogovém přístroji, ale bez překmitu. Stupnice je aktualizována 30krát za sekundu. Protože se stupnice aktualizuje rychleji než digitální displej, je užitečný pro seřízení špiček a nulových hodnot a sledování rychle se měnících vstupů. Pro funkce frekvence, činitele využití, šířky impulzu, dBm a činitele amplitudy představuje stupnice amplitudu vstupního signálu (volty nebo ampéry) a ne hodnotu primárního displeje. Stupnice není zobrazována pro kapacitanci, teplotu, LoZ, AC+DC, AC proti DC, špičku nebo funkce min max.

Pro stejnosměrné napětí, stejnosměrný proud a všechny relevantní procentuální režimy je zobrazena stupnice se středem v bodě nula. Pro stejnosměrné napětí a proud je rozsah stupnice maximem zvoleného rozsahu. Pro režim relativních procent je stupnice nastavena na ± 10 %.

Počet rozsvícených segmentů indikuje měřenou hodnotu ve vztahu k plné hodnotě vybraného rozsahu. V rozsahu 50 Vac, například, představuje hlavní rozdělení stupnice 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, a 50 Vac. Vstup 25 Vac bude zobrazen segmenty až do středu stupnice.

Pro hodnoty mimo stupnici se vpravo od normálního sloupcového grafu objeví ►. Pro stupnice vystředěné na nulu se na levém konci sloupcového grafu, pro negativní hodnoty mimo stupnici, objeví ◄ a na pravém konci, pro kladné hodnoty mimo stupnici, objeví ►.

Prvky stavové lišty

Stavová lišta v horní části displeje měřicího přístroje obsahuje indikátory stavu baterií, času, mini zobrazení měření, aktuální datum a ikonu zapnutí/vypnutí bzučáku.

Mini zobrazení měření znázorňuje měřené hodnoty primární funkce, pokud již nejsou zobrazeny v hlavní oblasti displeje. Například pokud je displej zmražen pomocí HOLD, mini zobrazení měření nadále zobrazuje vstupní signál (živě) a mini 4. Navíc mini zobrazení měření bude blikat, pokud se na primárním displeji objeví 4 (pro vstupy nad 30 V), ale bude zakryt. Mini zobrazení měření proudu 30 V), ale bude zakryt. Mini zobrazení měření proudu přesáhne maximální nepřetržitou úroveň proudu (viz parametry).

Hlavní oblast

Hlavní oblast displeje je prostor, v němž je zobrazen hlavní obsah měřicího přístroje. Primární displej (horní polovina hlavní oblasti) je místo, kde jsou zobrazovány nejdůležitější hodnoty vybrané funkce. Sekundární displej obsahuje stupnici a hodnoty, které je možné měřit spolu s hodnotami primární funkce. Například, při výběru měření frekvence ve Vac se hodnota frekvence objeví na primárním displeji s hodnotou střídavého napětí na sekundárním displeji.

Značky softwarového tlačítka

Značky čtyřech softwarových tlačítek (F1 až F4) se objevují na dolním řádku displeje. Tyto značky se mění v závislosti na výběru funkce a/nebo nabídky.

Seřízení kontrastu displeje

Popis otočného přepínače

Vyberte funkci primárního měření přepnutím otočného přepínače na jednu z ikon po jeho obvodu. Pro každou funkci měřicí přístroj zobrazí její standardní displej (rozsah, jednotky měření a modifikátory). Volby tlačítek, provedené pro jednu funkci, se nepřevádějí na jinou funkci. Model 289 nabízí dvě dodatečné funkce: nízké ohmy (**50** Ω) a nízká impedance (**LoZ**) ve střídavých voltech. Každá pozice zobrazená na obrázku 3 je popsána v tabulce 4.

Tabulka 4. Pozice otočného přepínače

Pozice přepínače	Funkce	
LoZ V	Měření střídavého napětí pomocí nízké impedance vstupu (pouze model 289)	
ĩ	Měření střídavého napětí	
mV	Měření střídavého napětí v milivoltech	
V	Měření stejnosměrného a ac+dc napětí	
mV₿	Měření teploty a stejnosměrného a ac+dc napětí v milivoltech	
$\Omega_{nS}^{(0)))}$	$\Omega_{ns}^{(0))}$ Měření odporu, průchodnosti a vodivosti	
- > - ↓	Měření diod a kapacitance	
Å ma∷	Měření střídavého, stejnosměrného a ac+dc proudu v ampérech a miliampérech	
μΑ쯡	Měření střídavého, stejnosměrného a ac+dc proudu v mikroampérech až do 5 000 μΑ	
50Ω Měření odporu pomocí rozsahu 50Ω (pouze model 289)		

Použití vstupních kontaktů

Všechny funkce vyjma proudu používají I+++VΩ vstupní kontakty a COM. Dva vstupní kontakty proudu (A a mA/µA) se používají následujícím způsobem:

Pro proud od 0 do 400 mA slouží μ_A^{mA} kontakty **a** COM.

Pro proud mezi 0 a 10 A slouží kontakty A a COM.

Obrázek 4. Vstupní zdířky

Tabulka 5. Vstupní kontakty

Kontakt	Vysvětlivky	
A	Vstup pro měření proudu 0 A až 10,00 A (přetížení 20 VA zapnuto po 30 sekund, 10 minut vypnuto), frekvence a činitele využití.	
mΑ μΑ	Vstup pro měření proudu 0 A až 400 mA, frekvence a činitele využití.	
СОМ	Zpětný kontakt pro všechna měření.	
	Vstup pro měření napětí, průchodnosti, odporu, diod, vodivosti, kapacitance, frekvence, teploty, periody a činitele využití.	

Řízení napájení měřicího přístroje

Měřicí přístroj je napájen šesti bateriemi AA a je ovládán pomocí spínače na předním panelu a pomocí vnitřních obvodů navržených tak, aby pomáhaly šetřit napětí baterie. Následující části popisují několik technik pro řízení napájení měřicího přístroje.

Manuální zapínání a vypínání měřicího přístroje

Abyste měřicí přístroj zapnuli stiskněte na vypnutém měřicím přístroji (). Stisknutím () na zapnutém měřicím přístroji jej vypnete.

Poznámka

Shromážděné údaje jsou při vypnutí měřicího přístroje uloženy, pokud je přístroj v režimech záznamu, záznamu MIN MAX nebo záznamu špiček. Po dalším zapnutí měřicího přístroje displej zobrazí zaznamenané údaje v režimu zastavení. Stisknutím softwarového tlačítka označeného Save (Uložit) údaje uložíte.

Indikátor stavu baterií

Indikátor stavu baterií v levém horním rohu displeje zobrazuje relativní stav baterií. Tabulka 6 popisuje různé stavy baterií, které indikátor zobrazuje.

Tabulka 6. Indikátor stavu baterií

Význam	Kapacita baterie	
-	Plná kapacita	
	¾ kapacita	
	½ kapacita	
	¼ kapacita	
	Téměř vybité (méně než jeden den)	
 Při kriticky nízké kapacitě se automaticky otevře zprávu "Replace batteries" (Vyměňte baterie) 15 sekund před vypnutím měřicího přístroje. 		

Měřicí přístroj zobrazí zprávu "Batteries low" (Vybité baterie), kdykoli stav baterií neumožní provést vybranou funkci.

Automatické vypnutí

Měřicí přístroj se automaticky vypne, pokud po dobu 15 minut (výchozí nastavení) nedojde k pohybu otočného přepínače nebo stisknutí tlačítka. Stisknutí tlačítka () měřicí přístroj po automatickém vypnutí znovu zapne. Pro změnu doby pro vypnutí nebo úplnou deaktivaci automatického vypnutí viz oddíl "Nastavení doby podsvícení a automatického vypnutí" dále v této příručce.

Režim úspory baterií

Pokud je aktivováno automatické vypnutí (nastaveno na určitou dobu) a pokud je aktivován záznam MIN MAX, záznam špiček, záznam nebo AutoHold, měřicí přístroj přejde do režimu úspory baterií pokud po nastavenou dobu nedojde k přepnutí otočného přepínače nebo stisknutí tlačítka. Pro režim záznamu je tento časový úsek pět minut. Pro režimy MIN MAX, špičky a AutoHold je časový úsek stejný, na jaký je nastavena funkce automatického vypnutí. Viz část "Nastavení doby podsvícení a automatického vypnutí" dále v této příručce. Režim úspory baterií šetří napětí baterií odpojením obvodů, včetně displeje, které nejsou nezbytné pro vybranou funkci. Nicméně LED dioda obklopující spínač napájení (⁽⁽ⁱ⁾) bude pokračovat v blikání, indikujíc, že měřicí přístroj nadále shromažďuje údaje.

Měřicí přístroj se "probudí" z režimu úspory baterií za následujících podmínek:

- stisknutí tlačítka
- pohyb otočného přepínače
- odpojení nebo připojení vodiče do vstupního konektoru proudu
- změna rozsahu měřicího přístroje
- zahájení IR komunikace

Tyto podmínky měřicí přístroj pouze "probudí" - nezmění funkci nebo režim provozu měřicího přístroje.

Ovládání podsvícení

Pokud je prohlížení displeje za nízké hladiny osvětlení obtížné, stiskněte (*) pro aktivaci podsvícení LCD. Tlačítko podsvícení mění podsvícení ve třech úrovních: nízké, vysoké a vypnuto. Pokud stav baterií nebude dostatečný pro zvolené podsvícení, měřicí přístroj zobrazí zprávu.

Uživatelsky nastavitelná doba vypnutí, řídící délku podsvícení displeje, slouží k úspoře napětí baterií. Výchozí doba vypnutí je 5 minut. Pro změnu doby vypnutí viz "Nastavení doby podsvícení a automatického vypnutí" dále v této příručce.

Výběr rozsahu

Vybraný rozsah měřicího přístroje je vždy zobrazen nad pravou stranou stupnice, jako indikátor rozsahu. Stisknutí RANGE přepíná měřicí přístroj mezi manuálním a automatickým výběrem rozsahu. Při aktivovaném manuálním výběru rozsahů také prochází režimy měřicího přístroje.

Poznámka

RANGE nemůžete používat ve funkcích vodivost, test diody, LoZ, nízké ohmy a teplota. Všechny tyto funkce používají pevný rozsah.

Při automatické volbě rozsahu vybere měřicí přístroj nejnižší rozsah pro zobrazení s nejvyšší dostupnou přesností (rozlišením) pro daný vstupní signál. Pokud je již aktivován manuální rozsah, stiskněte a jednu sekundu podržte RANGE pro aktivaci automatické volby rozsahů.

Pokud je aktivována automatická volba rozsahu, stisknutím RANGE aktivujete manuální volbu rozsahu. Každým dalším stisknutím RANGE nastavíte měřicí přístroj na vyšší rozsah, pokud již není nastaven na nejvyšší rozsah - v takovém případě bude rozsah přepnut na nejnižší hodnotu.

Popis nabídky funkcí

Každá funkce primárního měření (pozice otočného přepínače) má několik volitelných podfunkcí nebo režimů, aktivovaných stisknutím softwarového tlačítka označeného **Menu** (F1). Typická nabídka je vyobrazena na obrázku 5.

Výběr nabídky je označen plným černým čtverečkem (dále jen voličem nabídky) vlevo od položky nabídky. Pro umístění voliče nabídky vedle položky nabídky použijte čtyři kurzorové klávesy na předním panelu (() () () ()). Při pohybu voliče nabídky mezi položkami nabídky se mění čtyři softwarová tlačítka a jejich označení tak, aby odpovídala dostupným funkcím a/nebo režimům pro položku výběru v nabídce.

Nabídka použitá v příkladu na obrázku 5 zobrazuje funkci REL (Relativní) podle aktuálního výběru. Funkce, která je vybrána při otevření nabídky, je funkce, která byla vybrána při posledním použití nabídky. Pro pro přechod z položky nabídky REL do položky Hz stiskněte jednou () a pak jednou (). Při pohybu voliče nabídky mezi položkami nabídky se budou měnit označení softwarových tlačítek tak, aby odrážela jejich funkce. Jakmile se objeví požadovaná funkce nebo režim v jednom z označení softwarových tlačítek, stiskněte příslušné softwarové tlačítko pro jejich aktivaci. Automaticky otevřená nabídka se uzavře a displej se změní, aby odrážel právě provedený výběr. Stisknutí softwarového tlačítka označeného **Close** (Zavřít) zavře automaticky otevřenou nabídku a zanechá měřicí přístroj ve stavu, ve kterém byl před stisknutím softwarového tlačítka **Menu** (Nabídka).

Ve většině případů fungují softwarová tlačítka, zobrazená výběrem v nabídce, jako přepínací tlačítka. Nabídka v příkladu zobrazeném na obrázku 5 zobrazuje softwarová tlačítka **REL**, **REL%** a **Close** (Zavřít). V tomto příkladě není měřicí přístroj v relativním režimu, takže stisknutím softwarového tlačítka označeného **REL** aktivujete nebo přepnete relativní režim. Pokud však měřicí přístroj již v relativním režimu je, stisknutí stejného softwarového tlačítka relativní funkci deaktivuje.

V některých případech stisknutí funkce, kterou nelze použít s ostatními funkcemi objevujícími se v nabídce, vypne dříve vybranou funkci. Například, v obrázku 5, pokud je měřicí přístroj již v relativní funkci, stisknutí **REL%** způsobí vypnutí relativní funkce měřicího přístroje a zobrazení relativních procent.

V případech, kdy bylo vybráno více režimů, výběr první (nahoře vlevo) položky nabídky vždy vypne všechny ostatní funkce a režimy a vrátí měřicí přístroj do primární funkce, vybrané otočným spínačem. Například předpokládejme, že měřicí je přístroj nastaven na frekvenci (Hz) a zobrazuje v relativním režimu, jak bylo vybráno v nabídce na obrázku 5. Posunutím voliče nabídky na položku nabídky označenou **VAC** a stisknutím softwarového tlačítka označeného **VAC**, zruší výběr frekvence a relativní a ponechá měřicí přístroj pouze ve voltech AC.

Výběry v nabídce jsou uloženy pro každou pozici otočného přepínače. Například výběr **REL** pro pozici AC ve voltech způsobí výběr **REL** při příštím otevření nabídky AC ve voltech, i když mezi tím bude vybráno **Hz,%,ms** pro podobnou funkci AC v milivoltech.

Vždy budou zobrazeny až dva sloupce, každý se čtyřmi položkami. Pokud je pro primární funkci k dispozici více než osm položek nabídky, objeví se v pravém dolním rohu oblasti stránky

displeje ◆, indikující, že jsou k dispozici další položky. Po umístění voliče nabídky na jednu z položek v levém sloupci stisknutím ④ posunete obrazovku horizontálně a zobrazíte položky nabídky mimo obrazovku. Naopak s voličem nabídky na položce v pravém sloupci stiskněte ④ pro zobrazení položek nabídky mimo obrazovku.

Funkce Input Alert™ (Výstraha vstupu)

∕∆∆Výstraha

Aby se zabránilo poškození obvodu a možnému přepálení tavné pojistky měřicího přístroje nepokládejte sondy přes (souběžně s) obvodem pod proudem, pokud je vodič zapojen do kontaktu proudu. Způsobilo by to zkrat, protože odpor skrz kontakty měřicího přístroje je velmi nízký.

Pokud je měřící vodič zapojen do kontaktu **mA/µA** nebo **A**, ale otočný přepínač není nastaven na správnou pozici proudu, bzučák vás upozorní pípáním a zobrazením "Leads connected incorrectly" (Nesprávně připojené vodiče). Toto upozornění vám má zabránit pokusu měřit napětí, průchodnost, odpor, kapacitanci nebo hodnoty diod, když jsou vodiče zapojené do kontaktu proudu.

Použití tlačítka Info

Během používání měřicího přístroje můžete potřebovat další informace o vybrané funkci, tlačítku na předním panelu nebo položce nabídky. Stisknutím ()) otevřete informační okno, kde jsou uvedena témata o funkcích a modifikátorech, které jsou dostupné v okamžiku stisknutí tlačítka. Každé téma poskytuje stručné vysvětlení funkcí nebo vlastností měřicího přístroje.

Informace zobrazené pomocí (Immo) neslouží jako náhrada podrobnějších informací v této příručce. Vysvětlení funkcí a vlastností je stručné a slouží pouze k osvěžení paměti.

Někdy může množství zobrazených informačních témat přesáhnout oblast displeje. K přecházení mezi jednotlivými tématy použijte softwarová tlačítka **Next** (Další) a **Prev** (Předchozí). K procházení informací po celých obrazovkách použijte softwarové tlačítko označené **More** (Více) nebo (*) a (*).

Stisknutím softwarového tlačítka označeného **Close** (Zavřít) nebo (Imro) zavřete informační okno.

Režimy Hold a AutoHold

Pro zmrazení displeje v jakékoliv funkci stiskněte (HOLD). Skutečný vstup je nadále indikován pouze mini zobrazením měření a ikonou nebezpečného napětí (4). Indikátor stavu baterie je také aktivní. Označení softwarových tlačítek měřicího přístroje je změněno pro uložení zmrazeného měření nebo aktivaci režimu AutoHold.

Po stisknutí (HOLD) během záznamu MIN MAX, záznamu špiček nebo v průběhu záznamové relace se displej zastaví, ale záznam údajů bude nadále probíhat na pozadí. Dalším stisknutím (HOLD) aktualizujete displej, aby zobrazoval údaje zaznamenané během zastavení.

Pokud měřicí přístroj není v režimu špiček, MIN MAX nebo záznamu, aktivujete režim AutoHold stisknutím softwarového tlačítka označeného **AutoHOLD**. Operace AutoHold monitoruje vstupní signál, aktualizuje displej a spustí bzučák (pokud je aktivován), kdykoli je zjištěno nové stabilní měření. Stabilní měření je takové měření, které se nemění o více než nastavitelnou prahovou hodnotu (AutoHold threshold) po dobu alespoň jedné sekundy. Měřicí přístroj odfiltrovává signál z odpojených vodičů, takže je je možné přesouvat mezi měřicími body bez toho, aby se aktualizoval displej.

Poznámka

Pro měření teploty tvoří prahová úroveň AutoHold procento ze 100 stupňů. Výchozí prahová hodnota AutoHold jsou 4% ze 100 stupňů neboli 4 stupně Celsia nebo Fahrenheita.

Stisknutí Houb v režimu AutoHold vyvolá na displeji měřicího přístroje zobrazení aktuálního měření, stejně jako by bylo detekováno stabilní měření.

Pokud chcete nastavit hodnotu AutoHOLD, stiskněte softwarové tlačítko Setup pro přístup k nabídce nastavení. Pomocí kurzorových tlačítek posuňte volič nabídky vedle položky nabídky označené Record (Záznam) a stisknutím softwarového tlačítka označeného Recording (Záznam) otevřete obrazovku nastavení záznamu. Pomocí kurzorových tlačítek posuňte volič nabídky vedle položky označené Event Threshold for AutoHOLD a stiskněte softwarové tlačítko označené Edit. Stisknutím @ nebo © procházejte hodnotami prahové úrovně AutoHold. Po výběru požadované volby stiskněte softwarové tlačítko Close.

Měření činitele amplitudy

Činitel amplitudy je míra zkreslení signálu a je vypočítáván jako hodnota špičky signálu proti příslušné hodnotě rms. Pro zjišťování problémů s kvalitou napájení je to důležité měření.

Funkce činitel amplitudy měřicího přístroje je dostupná pouze pro měření střídavého proudu: Vac, mVac, Aac, mAac, a µAac. S měřicím přístrojem v jedné z funkcí měření střídavého proudu stiskněte softwarové tlačítko označené **Menu** (Nabídka). Pak posuňte volič nabídky vedle položky nabídky označené **Peak,CF** (Špička,CF) a stiskněte softwarové tlačítko označené **CF**. Hodnota činitele amplitudy je zobrazena na primárním displeji, zatímco měření střídavého proudu se objeví na sekundárním displeji. Během měření činitele amplitudy není možné použít funkci frekvence, činitele využití a šířky impulzu.

Záznam minimálních a maximálních hodnot

Režim záznamu MIN MAX zaznamenává minimální, průměrnou a maximální hodnotu vstupu. Pokud vstup klesne pod zaznamenanou hodnotu minima nebo stoupne nad hodnotu zaznamenaného maxima, měřicí přístroj pípne a zaznamená novu hodnotu. Měřicí přístroj zároveň uloží čas, který uběhl od začátku záznamové relace. Režim MIN MAX také vypočítá průměr všech měření od aktivace režimu.

Tento režim slouží pro záznam nespojitých měření, bezobslužný záznam minimálních a maximálních měření nebo pro záznam měření v případech, kdy provoz zařízení brání sledování měřicího přístroje. Režim MIN MAX je nejvhodnější pro záznam napěťových skoků,nárazových proudů a hledání občasných poruch.

Reakční čas je doba, po niž musí vstup zůstat na nové hodnotě, aby byla zaznamenána jako možná nová minimální nebo maximální hodnota. Měřicí přístroj má reakční čas MIN MAX 100 milisekund. Například, náraz trvající 100 milisekund bude zaznamenán, zatímco náraz trvající 50 milisekund nemusí být zaznamenán ve své skutečné hodnotě špičky. Více informací najdete v parametrech MIN MAX.

Zobrazená pravá průměrná hodnota je aritmetickým průměrem všech měření, provedených od začátku záznamu (přetížení jsou vyřazena). Průměrné měření je vhodné pro vyhlazení nestabilních vstupů, výpočet spotřeby energie, nebo odhad procenta času, po nějž je obvod aktivní.

Poznámka

Pokud jsou vstupní signály zašumělé nebo se prudce mění, zapněte režim Vyhlazování, který zobrazí stabilnější hodnotu.. Viz část "Aktivace a deaktivace režimu vyhlazování" dále v této příručce.

Pro prodloužení životnost baterií přejde měřicí přístroj během záznamu MIN MAX do režimu úspory baterií. Více informací o režimu úspory baterií najdete v části "Nastavení doby podsvícení a automatického vypnutí".

Pro aktivaci režimu MIN MAX stiskněte www. Jak ukazuje obrázek 6 měřicí přístroj zobrazuje MINMAX v horní části stránky měření a počáteční datum a čas MIN MAX ve spodní části stránky. Navíc se na sekundárním displeji objeví zaznamenané hodnoty maxima, průměru a minima, s příslušnými uplynulými časy.

• III 8:10pm		06/07/07 (1)) Min Max
4 1 -	19.81	VAC
Maximum	127.09**	Auto Range C 500 VAC
Average	119.50 [™]	00:03:17 C 01:10:09
Minimum	110.23 VA	C 00:59:59
Restart	Start . 00/07/	Stop

Obrázek 6. Displej záznamu MIN MAX

est42.eps

Pro ukončení relace záznamu MIN MAX stiskněte www nebo softwarové tlačítko označené **Stop**. Souhrnná informace na displeji bude zastavena a funkce softwarových tlačítek se změní, aby bylo možné uložit zaznamenané údaje. Opětovným stisknutím www nebo softwarového tlačítka označeného **Close** (Zavřít)opustíte záznamovou relaci MIN MAX bez uložení zaznamenaných údajů.

Poznámka

Otočením otočného přepínače před uložením zaznamenaných údajů MIN MAX způsobí ztrátu všech shromážděných údajů.

Chcete-li uložit snímek obrazovky dat, musíte ukončit relaci MIN MAX stisknutím softwarového tlačítka označeného **Stop**. Pak

stiskněte softwarové tlačítko označené **Save** (Uložit). Otevře se dialogové okno, kde lze zvolit výchozí název pro uložení nebo přiřadit jiný název. Stiskněte softwarové tlačítko označené jako **Save** (Uložit) pro uložení dat obrazovky MIN MAX. V tomto okamžiku nelze pokračovat v datech MIN MAX. Stiskněte softwarové tlačítko označené jako **Close** (Zavřít) pro ukončení režimu MIN MAX.

Stisknutí softwarového tlačítka označeného **Restart** v průběhu spuštění relace MIN MAX tuto relaci pozastaví, vyřadí všechna data MIN MAX a okamžitě zahájí novou relaci záznamu MIN MAX.

Záznam hodnot špiček

Záznam špičky je téměř stejný jako záznam MIN MAX, popsaný dříve v této příručce. Podstatný rozdíl mezi těmito dvěma funkcemi záznamu je kratší reakční čas pro záznam špičky: 250 µs. S tak krátkým reakčním časem je měřitelná skutečná hodnota špičky sinusoidového signálu. Přechody jsou pomocí funkce záznamu špičky přesněji měřitelné.

Pro aktivaci režimu špičky stiskněte softwarové tlačítko označené **Menu** (Nabídka). Přesuňte volič nabídky na položku nabídky označenou **Peak,CF** (Špička, CF) nebo **Peak** (Špička). Stisknutí softwarového tlačítka označeného **Peak** (Špička) spustí relaci záznamu špiček.

est43.eps

Obrázek 7. Displej záznamu špičky

Jak ukazuje obrázek 7 primární displej zobrazuje "živé" měření vstupů měřicího přístroje. V sekundární oblasti displeje jsou zobrazeny maximální a minimální hodnoty špičky a průměrná hodnota, spolu s příslušnými časovými značkami. Časová značka vedle průměrné hodnoty zobrazuje uplynulý čas relace záznamu špičky. Čas začátku relace záznamu špičky je zobrazen na spodním okraji hlavní oblasti displeje.

Pokud hodnota špičky vstupního signálu klesne pod zaznamenanou hodnotu minima nebo stoupne nad hodnotu zaznamenaného maxima, měřicí přístroj pípne a zaznamená novou hodnotu. Ve stejnou chvíli bude uložen uplynulý čas od zahájení relace záznamu špičky jako časová značka zaznamenané hodnoty. Stisknutí softwarového tlačítka označeného **Stop** ukončí relaci záznamu. Souhrnná informace na displeji bude zastavena a funkce softwarových tlačítek se změní, aby bylo možné uložit zaznamenané údaje. Stisknutím softwarového tlačítka označeného **Close** (Zavřít) opustíte záznamovou relaci špičky bez uložení zaznamenaných údajů.

Poznámka

Otočením otočného přepínače před uložením zaznamenaných údajů špičky způsobí ztrátu všech shromážděných údajů.

Chcete-li uložit snímek obrazovky dat špiček, musíte ukončit relaci zachycování špiček stisknutím softwarového tlačítka označeného Stop. Pak stiskněte softwarové tlačítko označené Save (Uložit). Otevře se dialogové okno, kde lze zvolit výchozí název pro uložení nebo přiřadit jiný název. Stiskněte softwarové tlačítko označené jako Save (Uložit) pro uložení dat obrazovky Špičky. V tomto okamžiku nelze pokračovat v zachycování špiček. Stiskněte softwarové tlačítko označené jako Close (Zavřít) pro ukončení režimu zachycování špiček.

Stisknutím softwarového tlačítka označeného **Restart** v průběhu relace záznamu špiček vyřadíte všechna zaznamenaná data špiček a okamžité zahájítenovou relaci záznamu špiček.

Při prohlížení uložených záznamů vypadají snímky záznamů špičky stejně jako zastavené záznamy špičky. Pro identifikaci jednoho záznamu od druhého použijte uplynulý čas (časová značka průměrné hodnoty).

Pro prodloužení životnosti baterie se měřicí přístroj během záznamu špičky (po uplynutí času nastaveného ve funkci automatického vypnutí) přepíná do režimu úspory baterií. Více informací o režimu úspory baterií najdete v části "Nastavení doby podsvícení a automatického vypnutí".

Filtr propouštějící pouze nízké kmitočty (pouze model 289)

Měřicí přístroj je vybaven filtrem propouštějícím pouze nízké kmitočty střídavého proudu. Při měření střídavého napětí nebo frekvence střídavého napětí stiskněte pro otevření nabídky funkcí softwarové tlačítko označené **Menu** (Nabídka) a přesuňte volič nabídky na položku **Too**. Poté stiskněte softwarové tlačítko označené **Too** pro přepnutí režimu filtru propouštějícího pouze nízké kmitočty na zapnuto (zobrazeno **Too**) a vypnuto.

∕∆∕∆Výstraha

Abyste předešli možnému elektrickému rázu nebo osobnímu úrazu, nepoužívejte možnost filtr propouštějící pouze nízké kmitočty pro ověření přítomnosti nebezpečných napětí. Mohou být přítomna napětí vyšší, než jaká jsou indikována. Pro zjištění přítomnosti nebezpečného napětí změřte napětí nejprve bez filtru. Pak vyberte funkci filtru.

Měřicí přístroj bude pokračovat v měření ve zvoleném režimu střídavého proudu, ale signál bude nyní procházet filtrem, blokujícím nežádoucí napětí nad 1 kHz jak ukazuje obrázek 8. Filtr propouštějící pouze nízké kmitočty může zlepšit průběh měření složených sinusoidových vln, které jsou obyčejně generovány převodníky a motory pohonu s proměnnou frekvencí.

Poznámka

V režimu nízkého kmitočtu přejde měřicí přístroj do manuálního režimu. Rozsahy vyberte stisknutím (RANGE). Při aktivaci filtru propouštějícího pouze nízké kmitočty není dostupná automatická volba rozsahu.

aom11f.eps

Obrázek 8. Filtr propouštějící pouze nízké kmitočty

Provádění relativních měření

Měřicí přístroj, nastavený do režimu relativní nebo relativní procenta, zobrazí vypočítané relativní hodnoty, založené na uložených hodnotách. Obrázek 9 zobrazuje funkce, pro něž jsou dostupné oba dva relativní režimy. Navíc jsou oba dva relativní režimy dostupné pro frekvenci, činitel využití, šířku impulzu, činitel amplitudy a dB.

est29.eps

Obrázek 9. Funkce relativního režimu

Pro aktivaci relativního režimu nebo režimu relativních procent během používání některé z funkcí na obrázku 9, stiskněte softwarové tlačítko označené **Menu** (Nabídka). Přesuňte volič nabídky na položku nabídky označenou **REL**. Pak stiskněte softwarové tlačítko označené buď **REL** nebo **REL%**. Hodnota měření v době aktivace buď Rel nebo Rel % je uložena jako referenční hodnota a je zobrazena na sekundárním displeji. Aktuální nebo "živé" měření je přesunuto na sekundární displej a primární displej zobrazuje rozdíl mezi aktuálním měřením a referenční hodnotou v jednotkách měření pro REL a jako procento pro REL %.

Pokud je relativní procento aktivováno, stupnice je vystředěna na nulu a indikuje procentuální rozdíl. Rozsah stupnice je omezen na ± 10 %, ale displej dosahuje hodnoty až $\pm 999,9$ %. Při hodnotě 1000 % nebo vyšší displej zobrazí **OL**. Pokud je referenční hodnota 0, měřicí přístroj zobrazí **OL**.

S výjimkou měření dB je rozsah nastaven na manuální a není možné jej změnit. Automatická i manuální volba rozsahu je možná při relativních měřeních dB.

Při aktivaci relativního měření při měření dBm nebo dBV se zobrazené jednotky změní na dB.

V režimu relativního nebo relativního procentuálního měření indikuje označení softwarového tlačítka pro F3 **REL** nebo **REL%**, podle toho, který ze dvou režimů není vybrán. Tlačítko F3 funguje jako přepínač, který přepíná měřicí přístroj mezi těmito režimy. Posunutí rotačního přepínače mezi V a mV v režimu relativního dBm nebo dBv nezablokuje měření dB. Umožňuje to průběžná měření v širokém rozsahu vstupních napětí.

Měření

Následující části popisují provádění měření pomocí měřicího přístroje.

Měření střídavého napětí

Měřicí přístroj zobrazuje měření střídavého napětí jako hodnotu rms (efektivní hodnota střídavého napětí). Hodnota rms odpovídá stejnosměrnému napětí, které by vyprodukovalo stejné množství odporového tepla jako měřené napětí. Měření True-rms jsou přesná pro sinusoidální vlny a jiné formy vln (bez zbytkového stejnosměrného proudu) jako jsou pravoúhlé vlny, trojúhelníkové vlny a schodovité kmity. Pro střídavý proud se zbytkovým stejnosměrným proudem najdete informace v části "Měření signálů střídavého proudu a stejnosměrného proudu" dále v této příručce.

Otočte otočný přepínač měřicího přístroje na $\widetilde{\gamma}$ nebo \widetilde{mv} a nastavte měřicí přístroj pro měření voltů AC, jak ukazuje obrázek 10.

Funkce volty AC nabízí několik režimů, které poskytnou více informací o signálu střídavého proudu. Stisknutí softwarového tlačítka označeného **Menu** (Nabídka) otevře nabídku položek, které lze použít pro modifikaci základních měření střídavého napětí. Více informací o každé položce nabídky najdete v příslušných částech této příručky.

Pro zrušení všech režimů a návrat k základnímu měření voltů AC stiskněte softwarové tlačítko označené **Menu** (Nabídka). Přesuňte volič nabídky na položku nabídky označenou **VAC**. Stiskněte softwarové tlačítko označené **VAC** pro zrušení všech funkcí a režimů.

Obrázek 10. Měření střídavého napětí

Použití LoZ pro měření napětí (pouze Model 289)

🛆 Upozornění

Režim LoZ nepoužívejte k měření napětí v obvodech, které by mohly být poškozeny nízkou impedancí tohoto režimu ($\approx 3 \text{ k}\Omega$).

Pro eliminaci šumového napětí vyvíjí funkce měřicího přístroje LoZ nízkou impedanci na vodičích a dosahuje tak přesnějšího měření.

Pro měření LoZ nastavte otočný přepínač na $\frac{LoZ}{v^2}$. Měřicí přístroj zobrazí střídavé napětí na primárním displeji a stejnosměrné napětí na sekundárním displeji. Během měření LoZ je rozsah měřicího přístroje v režimu manuálního nastavení rozsahu nastaven na 1000 voltů.

V LoZ jsou možnosti (RANGE) a (WILAW) deaktivovány. Pro tuto funkci již neexistují žádné dodatečné režimy a proto je softwarové tlačítko označené **Menu** (Nabídka) deaktivováno také.

Provádění měření dB

Měřicí přístroj je schopen zobrazit napětí jako hodnotu dB, buď ve vztahu k 1 miliwattu (dBm) referenčnímu napětí 1 voltu (dBV) nebo uživatelem stanovené referenční hodnotě. Viz část "Nastavení uživatelské referenční hodnoty dBm" dále v této příručce.

Obrázek 11. Zobrazení dBm

Pro nastavení měřicího přístroje, aby zobrazoval hodnoty v dBm, nastavte otočný přepínač na \tilde{v} nebo $_{m\tilde{v}}v$ a stiskněte softwarové tlačítko označené **Menu** (Nabídka). Přesuňte volič nabídky na položku nabídky označenou **dBm**. Stiskněte softwarové tlačítko označené **dBm**. Výběr nabídky **dBm**, **Hz** nahradí sekundární displej (123,45 VAC v obrázku 11) měřením frekvence. Všechna měření napětí jsou zobrazena jako hodnota dBm, jak ukazuje obrázek 11.

Měření dBm musí používat referenční impedanci (odpor) pro výpočet hodnoty dBm na základě 1 miliwattu. Při nastavení na 600 Ω (výchozí) není referenční impedance během měření dBm zobrazena. Po nastavení na jinou hodnotu než 600 Ω je referenční impedance zobrazena přímo nad označením softwarového tlačítka. Pro výběr jiné referenční hodnoty stiskněte softwarové tlačítko označené **Ref** pro zobrazení okna s aktuální referenční hodnotou. Stisknutím () nebo (), prolistujete devět přednastavených referenčních hodnot: 4, 8, 16, 25, 32, 50, 75, 600, a 1000. Nastavte referenční hodnotu stisknutím softwarového tlačítka označeného **OK**. Pro přidání vlastní referenční impedance viz část "Nastavení uživatelské referenční hodnoty dBm" dále v této příručce.

Měření dBV používá referenční napětí 1 Volt pro porovnání proti aktuálnímu měření. Rozdíl mezi dvěmi střídavými signály je zobrazen jako hodnota dBV. Nastavení referenční impedance není součástí měření dBV.

Pro měření dBV umístěte otočný přepínač na \tilde{v} nebo \tilde{mv} a připojte vodiče měřicího přístroje na napětí, které chcete měřit. Pak stiskněte softwarové tlačítko označené **Menu** (Nabídka). Posuňte volič nabídky na položku nabídky označenou **dBV** a stiskněte stiskněte softwarové tlačítko označené **dBV**. Měřicí přístroj zobrazí napětí v dBV.

Pro opuštění funkce dBV nebo dBm stiskněte softwarové tlačítko označené **Menu** (Nabídka) a následně softwarové tlačítko označené **dBV** nebo **dBm**. dBV nebo dBm zrušíte také výběrem některého dalšího modifikátoru, jako je **ms**, %, nebo **CF**.

Měření stejnosměrného napětí

Měřicí přístroj zobrazí hodnoty stejnosměrného napětí a jejich polarity. Stupnice pro měření stejnosměrného napětí je vystředěna na nulu. Pozitivní stejnosměrné napětí způsobí vyplnění stupnice směrem doprava od středu, zatímco negativní napětí ji vyplní směrem doleva.

Pro měření stejnosměrného napětí pomocí měřicího přístroje otočte otočný přepínač do pozice \overline{v} nebo \overline{mv} , jak ukazuje obrázek 12.

Funkce volty DC nabízí několik režimů, které poskytnou více informací o signálu stejnosměrného proudu. Stisknutí softwarového tlačítka označeného **Menu** (Nabídka) otevře nabídku položek, které lze použít pro modifikaci základních měření stejnosměrného napětí. Více informací o každé položce nabídky najdete v příslušných částech této příručky.

Pro zrušení všech režimů a návrat k základnímu měření voltů DC stiskněte softwarové tlačítko označené **Menu** (Nabídka). Přesuňte volič nabídky na položku nabídky označenou **VDC**. Stiskněte softwarové tlačítko označené **VDC** pro zrušení všech funkcí a režimů.

Obrázek 12. Měření stejnosměrného napětí

Měření AC a DC signálů

Měřicí přístroj umožňuje zobrazení AC a DC komponentů signálů (napětí nebo proudu) jako dvou samostatných hodnot nebo jako kombinované hodnoty AC+DC (rms). Jak ukazuje obrázek 13, měřicí přístroj zobrazuje AC a DC kombinace třemi způsoby: střídavý nad stejnosměrným (AC,DC), stejnosměrný nad střídavým (DC,AC) a střídavý v kombinaci se stejnosměrným (AC+DC). Vyberte jedno z těchto třech zobrazení pomocí nabídek funkce a režim.

S otočným přepínačem nastaveným na \overline{v} , \overline{mv} , $A_{A\cong}$ nebo $\mu A\cong$, , stiskněte softwarové tlačítko označené **Menu** (Nabídka). Přesuňte volič nabídky na položku nabídky označenou **AC+DC**. V této chvíli budou označení tří softwarových tlačítek indikovat **AC+DC** (F1), **AC,DC** (F2), a **DC,AC** (F3). Stiskněte softwarové tlačítko, představující ty dva signály, které požadujete.

V žádném ze tří AC+DC režimů nejsou povolena měření špiček, frekvence, činitele využití a periody. Navíc nejsou v režimech AC,DC nebo DC,AC povoleny režimy MIN MAX, relativní a relativní %.

Poznámka

Stupnice není v žádném z těchto AC+DC režimů měřicího přístroje zobrazena.

Obrázek 13. Zobrazení AC a DC
V režimech je dostupné manuální i automatické nastavování rozsahů. Stejný rozsah je použit pro signály ac i dc. Nicméně v automatickém nastavení rozsahů dojde při překročení aktuálního rozsahu ac nebo dc signálu k nastavení vyššího rozsahu. Ke nastavení nižšího rozsahu dojde pouze tehdy, když ac i dc signály poklesnou pod 10 % aktuálního rozsahu. Pro AC+DC je nastavení rozsahu řízeno hodnotami signálu ac a dc a ne součtem výpočtu AC+DC.

Pro opuštění režimu AC+DC stiskněte softwarové tlačítko označené **Menu** (Nabídka) a vyberte výchozí režim pro vybranou funkci. Pro funkce voltů dc a milivoltů dc přesuňte volič nabídky na **VDC** a stiskněte softwarové tlačítko označené **VDC**. Pro aktuální funkci přesuňte volič nabídky na položku nabídky **AC,DC** a stiskněte buď softwarové tlačítko **AC** nebo **DC**.

Měření teploty

∆∆Výstraha

Aby se zabránilo potenciálnímu nebezpečí úrazu ohněm nebo elektrickým proudem nepřipojujte termoelektrický článek k obvodům pod proudem.

Měřicí přístroj používá pro měření teploty teplotní sondu 80BK-A Integrated DMM Temperature Probe nebo jinou teplotní sondu typu K. Pro měření teploty nastavte měřicí přístroj jak je ukázáno na obrázku 14. Stiskněte softwarové tlačítko označené **Menu** (Nabídka) a posuňte volič nabídky na položku nabídky označenou **Temp** (Teplota). Stiskněte softwarové tlačítko označené**F** pro teplotu ve stupních Fahrenheita nebo **C** pro stupně Celsia.

Poznámka

Měřicí přístoj klasifikovaný jako "SI" nebude mít volbu **F** .

Primární displej obyčejně zobrazuje teplotu nebo zprávu "Open Thermocouple" (Otevřený termoelektrický článek). Zobrazení zprávy Otevřený termoelektrický článek může být způsobeno porušením (rozpojením) sondy nebo tím, že na vstupních kontaktech měřicího přístroje není nainstalována žádná sonda. Přemostěním kontaktu $I \rightarrow V \Omega$ ke kontaktu **COM** bude zobrazena teplota na kontaktech měřicího přístroje.

Poznámka

Tlačítko RANGE je deaktivováno, pokud je měřicí přístroj ve funkci teploty.

Obrázek 14. Měření teploty

Pro zadání hodnoty teplotního posunu stiskněte softwarové tlačítko označené **Offset** (Posun) - otevře se okno s aktuální hodnotou posunu. Pro umístění kurzoru nad jedním z čísel nebo znaménkem polarity použijte () a (). Pro listování čísly pro každé místo v posunu nebo přepnutí mezi posunem + a - použijte () a () ? To nastavení posunu teploty stiskněte po zobrazení požadované hodnoty softwarové tlačítko označené **OK**. Je-li nastavena na jinou hodnotu než 0,0 je hodnota posunu zobrazena na sekundárním displeji.

Měření odporu

▲ Upozornění

Abyste předešli možnému poškození měřicího přístroje nebo testovaného zařízení, odpojte před měřením odporu napájení obvodu a vybijte všechny vysokonapěťové kondensátory.

Měřicí přístroj měří odpor (opak průtoku proudu) v ohmech (Ω). Měření se provede vysláním slabého proudu měřícími vodiči do zkoušenému obvodu. Pro měření odporu nastavte otočný přepínač měřicího přístroje na n^m a nastavte měřicí přístroj podle obrázku 15.

Při měření odporu pamatujte na následující pokyny.

Jelikož zkušební proud měřicího přístroje protéká všemi možnými cestami mezi konci vodičů, naměřená hodnota rezistoru v obvodu se často liší od udávané hodnoty rezistoru.

Měřící vodiče mohou k měření odporu přidat odchylku 0,1 Ω až 0,2 Ω . Pro přezkoušení vodičů spojte konce vodičů a odečtěte jejich odpor. Pro odečtení odporu vodičů od hodnoty měření, spojte konce vodičů dohromady a stiskněte softwarové tlačítko označené **Menu** (Nabídka). Pak posuňte volič nabídky na položku nabídky označenou **REL** a stiskněte stiskněte softwarové tlačítko označené **REL**. Nyní budou všechna zobrazená měření indikovat odpor na koncích vodičů.

Funkce odporu měřicího přístroje obsahuje režimy, pomáhající s měřením odporu. Stisknutí softwarového tlačítka označeného **Menu** (Nabídka) otevře nabídku položek, které lze použít pro modifikaci základních měření odporu. Více informací o každé položce nabídky najdete v příslušných částech této příručky.

Obrázek 15. Měření odporu

Použití funkce 50Ω (pouze model 289)

🛆 Upozornění

Aby se zabránilo poškození zkoušených obvodů nezapomeňte, že měřicí přístroj je zdrojem proudu až do 10 mA při svorkovém napětí až 20 Voltů.

Pro měření nízkého odporu pomocí měřicího přístroje přepněte otočný přepínač na 50Ω . Tato funkce má jediný rozsah a proto je tlačítko mane deaktivováno, pokud je měřicí přístroj ve funkci 50Ω .

S funkcí **50** Ω je možné použít pouze funkce relativní nebo relativní procento. Stiskněte softwarové tlačítko označené **Menu** (Nabídka) pro přístup k těmto dvěma funkcím.

Zkoušení průchodnosti

\Lambda Upozornění

Abyste předešli možnému poškození měřicího přístroje nebo testovaného zařízení, odpojte před zkoušením průchodnosti napájení obvodu a vybijte všechny vysokonapěťové kondensátory.

Průchodnost je existence úplné trasy pro průchod proudu. Funkce průchodnosti detekuje přechodná přerušení a zkraty, trvající i pouhou 1 ms. Měřicí přístroj používá tři indikátory pro absenci nebo existenci průchodnosti: hodnotu odporu, indikátor přerušení/uzavření a bzučák.

Hodnota odporu je jednoduše funkcí odporu měření. Nicméně pro příliš krátké přechody průchodnosti se pomalá odezva

měření měřicího přístroje neobjeví na digitálním displeji. Proto funkce průchodnosti používá pro existenci nebo absenci průchodnosti grafický indikátor. Obrázek 16 ukazuje indikátor průchodnosti pro uzavřený a přerušený obvod.

Obrázek 16. Indikátor průchodnosti

Pro zkoušku průchodnosti umístěte otočný přepínač měřicího přístroje na $\Omega_{ns}^{(M)}$ a nastavte měřicí přístroj podle obrázku 17. Stiskněte softwarové tlačítko označené ^(M). Pro průchodnost "uzavřený" znamená měřenou hodnotu nižší než 8 % plného rozsahu 500 Ω a nižší než 4 % pro jiné rozsahy odporu.

Poznámka

Měřící přístroj funguje v manuálním rozsahu pouze pokud je vybrána funkce průchodnosti.

Obrázek 17. Zkoušení průchodnosti

Pro nastavení, zda bzučák zazní při uzavření nebo přerušení, stiskněte softwarové tlačítko označené **Menu** (Nabídka). Posuňte volič nabídky na položku nabídky označenou **Beeper** (Bzučák) a stiskněte softwarové tlačítko označené **Short/O....** Tato volba bzučáku, pípnutí při uzavření nebo pípnutí při přerušení, je zobrazena přímo nad indikátorem průchodnosti. Pokud je nejdříve zadán režim průchodnosti je bzučák průchodnosti vždy aktivován.

Pro aktivaci nebo deaktivaci bzučáku průchodnosti stiskněte softwarové tlačítko označené **Menu** (Nabídka). Posuňte volič nabídky na položku nabídky označenou **Beeper** (Bzučák) a stiskněte softwarové tlačítko označené **Beeper** (Bzučák). Stav bzučáku průchodnosti je zobrazen vpravo od hodnoty odporu s značkou ^{IIII} při aktivaci a značkou ^{IIII} při deaktivaci. Toto nastavení je nezávislé na nastavení bzučáku měřicího přístroje v nabídce nastavení.

Stiskem softwarového tlačítka F3 přepínejte funkce průchodnosti a odporu, přičemž tlačítko je vždy označeno alternativní funkcí.

Použití vodivosti pro zkoušky vysokého odporu

Vodivost, opak odporu, je schopnost obvodu vést proud. Vysoké hodnoty vodivosti odpovídají nízkým hodnotám odporu.

Jednotkou vodivosti je Siemens (S). Měřicí rozsah 50 nS přístroje měří vodivost v nanosiemensech (1 nS = 0,00000001 Siemens). Protože takové nízké hodnoty vodivosti odpovídají extrémně vysokým hodnotám odporu, slouží rozsah nS pro měření odporu komponentů až do 100 000 M Ω , nebo 100 000 000 000 Ω 1 nS = 1000 M Ω).

Pro měření vodivosti nastavte otočný přepínač měřicího přístroje na n^(IIII) a nastavte měřicí přístroj podle obrázku 18. Posuňte volič nabídky na položku nabídky označenou **Ohms,nS,**IIII (Ohmy,nS) a stiskněte softwarové tlačítko označené **nS**.

Při rozpojených měřících vodičích obyčejně přetrvává reziduální hodnota vodivosti. Pro zajištění přesného měření stiskněte softwarové tlačítko označené **Menu** (Nabídka). Přesuňte volič nabídky na položku nabídky označenou **REL** a stiskněte softwarové tlačítko označené **REL** pro odečtení zbytkové hodnoty s rozpojenými měřícími vodiči.

Poznámka

Tlačítko RANGE je deaktivováno, pokud měřicí přístroj měří vodivost.

Obrázek 18. Měření vodivosti

Měření kapacitance

▲ Upozornění

Abyste předešli možnému poškození měřicího přístroje nebo testovaného zařízení, odpojte před měřením kapacitance napájení obvodu a vybijte všechny vysokonapěťové kondensátory. Pro potvrzení, že je kondensátor vybitý, použijte funkci stejnosměrného napětí.

Kapacitance je schopnost komponentu pojmout elektrický náboj. Jednotkou kapacitance je Farad (F). Většina kondensátorů je v rozsahu nanofaradů (nF) nebo mikrofaradů (µF).

Měřicí přístroj měří kapacitanci nabitím kondensátoru známým proudem po známou dobu, změřením výsledného napětí a následným výpočtem kapacitance.

Obrázek 19. Měření kapacitance

Pro měření kapacitance nastavte otočný přepínač měřicího přístroje na ‡ a nastavte měřicí přístroj podle obrázku 19. Pokud displej již neindikuje, že měřicí přístroj měří kapacitanci, stiskněte softwarové tlačítko označené **Menu** (Nabídka). Pak posuňte volič nabídky na položku nabídky označenou **Diode,Cap** (Dioda, Kapacitance) a stiskněte softwarové tlačítko označené **Cap** (Kapacitance).

Poznámka

Pro zvýšení přesnosti měření kondensátorů s nízkou hodnotou, stiskněte **Menu** (Nabídka) a přesuňte volič nabídky na položku nabídky označenou **REL**. Pro odečtení zbytkové kapacitance měřicího přístroje a vodičů stiskněte při rozpojených měřících vodičích softwarové tlačítko označené **REL**.

Zkoušení diod

\Lambda Upozornění

Abyste předešli možnému poškození měřicího přístroje nebo testovaného zařízení, odpojte před zkoušením diod napájení obvodu a vybijte všechny vysokonapěťové kondensátory.

Zkoušení diod použijte pro kontrolu diod, tranzistorů, řízených křemíkových usměrňovačů (SCR) a jiných polovodičových

součástek. Při zkoušce je vyslán uzlem polovodiče proud a následně je změřen pokles napětí v uzlu. Typický pokles na uzlu je 0,5 V až 0,8 V.

Pro zkoušku diody z obvodu nastavte otočný přepínač měřicího přístroje na ‡ a nastavte měřicí přístroj podle obrázku 20. Pokud displej již neindikuje, že měřicí přístroj je ve funkci zkoušení diod, stiskněte softwarové tlačítko označené **Menu** (Nabídka). Pak posuňte volič nabídky vedle položky nabídky označené **Diode,Cap** (Dioda, Kapacitance) a stiskněte stiskněte softwarové tlačítko označené **Diode** (Dioda).

Pokud je během zkoušení diody aktivován bzučák, ozve se krátké pípnutí pro normální uzel a plynulý zvuk pro uzavřený uzel (pod 0,1 V). Pro informace o deaktivaci bzučáku viz část "Deaktivace a aktivace bzučáku".

V obvodu by měla podobná dioda indikovat předpětí v přímém směru 0,5 V až 0,8 V; nicméně hodnota se může lišit v závislosti na odporu trasy mezi konci vodiče.

Poznámka

(RANGE) a hodnoty MIN MAX jsou zablokovány, pokud je měřící přístroj nastavený na zkoušení diod.

Obrázek 20. Zkoušení diod

http://www.elso.sk

Měření proudu

A∆Výstraha

Abyste zabránili poškození měřicího přístroje a možnému zranění, nikdy se nepokoušejte o měření proudu v obvodu, kde je potenciál oproti uzemnění vyšší než 1000 V.

\land Upozornění

Abyste předešli poškození měřicího přístroje nebo zkoušeného zařízení, zkontrolujte před měřením proudu pojistky měřicího přístroje. Viz část o údržbě dále v této příručce. Pro měření používejte náležité kontakty, funkce a rozsahy. Nikdy nepokládejte vodiče přes (souběžně s) obvodem nebo komponenty, pokud jsou vodiče připojeny ke kontaktům proudu.

Proud je tok elektronů vodičem. Pro měření proudu musíte rozpojit zkoušený obvod a zapojit měřicí přístroj do série s obvodem.

Poznámka

Při měření proudu bude displej blikat, pokud vstupní proud překročí 10 ampérů na kontaktu **A** a 400 mA na kontaktu **mA/μA**. Je to varování, že proud se blíží limitu proudu pojistky.

Pro měření střídavého nebo stejnosměrného proudu postupujte následujícím způsobem:

1. Odpojte napájení obvodu. Vybijte všechny vysokonapěťové kondensátory.

Černý vodič zapojte do kontaktu COM . Zapojte červený vodič do vstupu, odpovídajícímu měřenému rozsahu.

Poznámka

Abyste zabránili přepálení 440 mA pojistky měřicího přístroje, použijte kontakt mA/µA pouze pokud jste si jisti, že proud je nižší než 400 mA.

- Pokud používáte kontakt A, nastavte otočný přepínač na ^A_A Pokud používáte kontakt mA/µA, nastavte otočný přepínač na µA [→] pro proudy pod 5000 µA (5 mA), nebo na ^A_A [→] pro proudy nad 5000 µA. Viz obrázek 21 pro zapojení měřících vodičů a výběr funkce. Pro více informací o výstrahách používaných měřicím přístrojem při nesprávném použití vodičů pro měření proudu viz část "Funkce výstrah vstupu".
- 4. Rozpojte obvod, který má být zkoušen podle obrázku 22, . Dotkněte se červeným vodičem pozitivnější strany rozpojení; dotkněte se černým vodičem negativnější strany rozpojení. Obrácení vodičů způsobí naměření negativní hodnoty, ale nepoškodí měřicí přístroj.
- Připojte napájení obvodu; odečtěte hodnotu na displeji. Všimněte si jednotky měření, uvedené na pravé straně displeje (μA, mA, nebo A).
- Vypněte napájení obvodu a vybijte všechny vysokonapěťové kondensátory. Odpojte měřicí přístroj a znovu spojte obvod pro normální chod.

Poznámka

V průběhu funkce měření proudu zůstane měřící přístroj ve zvoleném režimu střídavého nebo stejnosměrného proudu při přepnutí mezi $_{MA}^{mA} = a_{MA}^{mA}$. Kdykolív se přepne na jednu z funkcí měření, uvede se měřicí přístroj do výchozího stavu posledně vybraného typu proudu (AC nebo DC).

Obrázek 21. Nastavení měření proudu

est18.eps

Obrázek 22. Zapojení obvodu pro měření proudu

http://www.elso.sk

\Lambda Upozornění

Položení vodičů (zapojených do kontaktů proudu) přes (nebo podél) obvodu pod proudem může poškodit obvod, který zkoušíte a přepálit pojistku měřicího přístroje. Může to způsobit zkrat, protože odpor skrz kontakty měřicího přístroje je velmi nízký, takže měřicí přístroj se chová jako uzavřený obvod.

Níže jsou uvedeny tipy pro měření proudu:

Měřič proudu přes sebe pouští malé napětí, což může ovlivnit funkci obvodu. Toto napěťové zatížení můžete vypočítat pomocí hodnot, uvedených v parametrech pod heslem Zatížení napětí (A, mA, μA).

Funkce proudu měřícího přístroje nabízí několik režimů, které vám poskytnou více informací o signálu proudu. Stisknutí softwarového tlačítka označeného **Menu** (Nabídka) otevře nabídku položek, které lze použít pro modifikaci základních měření proudu. Více informací o každé položce nabídky najdete v příslušných částech této příručky.

Pro zrušení všech režimů a návrat k základnímu měření střídavého nebo stejnosměrného proudu stiskněte softwarové tlačítko označené **Menu** (Nabídka). Přesuňte volič nabídky na položku nabídky označenou **AC,DC**. Pro zrušení všech funkcí a režimů a provedení základních měření střídavého proudu stiskněte softwarové tlačítko označené **AC** nebo **DC** pro základní měření stejnosměrného proudu.

Měření frekvence

Frekvence je počet cyklů, kterými signál projde během jedné sekundy. Měřicí přístroj měří frekvenci signálu napětí nebo

proudu sčítáním počtu případů, kdy signál překročí prahovou úroveň během specifikované doby.

Obrázek 23 zvýrazňuje funkce, umožňující měření frekvence.

est21.eps

Obrázek 23. Funkce umožňující měření frekvence

Měřicí přístroj se automaticky nastaví do jednoho z pěti rozsahů frekvencí: 99,999 Hz, 999,99 Hz, 9,9999 kHz, 99,999 kHz a 999,99 kHz. Obrázek 24 ukazuje typické zobrazení frekvence. Stisknutí tlačítka (TANGE) ovládá rozsah vstupu primární funkce (volty nebo ampéry) a ne rozsah frekvence.

Pro měření frekvence otočte otočný přepínač na jednu z primárních funkcí zvýrazněných na obrázku23 umožňujících měření frekvence. Stiskněte softwarové tlačítko označené **Menu** (Nabídka) a posuňte volič nabídky na položku nabídky označenou **Hz,%,ms**. Pak stiskněte softwarové tlačítko označené **Hz**.

Obrázek 24. Zobrazení frekvence

Jak ukazuje obrázek 24 frekvence vstupu signálu je zobrazena na primárním displeji. Hodnota voltů nebo ampérů signálu je zobrazena na sekundárním displeji. Stupnice zobrazuje frekvenci, ale hodnotu voltů nebo ampérů vstupního signálu. Výběr mezi spuštěným zvýšením **1** nebo poklesem **1** hrany se provádí stisknutím softwarového tlačítka **1 1** . Softwarové tlačítko přepíná nastavení spouštění mezi těmito možnostmi.

Níže jsou uvedeny tipy pro měření frekvence:

Pokud měření ukazuje 0 Hz nebo je nestabilní, vstupní signál může být pod nebo poblíž spouštěcí úrovně. Tyto problémy můžete obyčejně odstranit manuálním výběrem nižšího rozsahu vstupu, čímž zvýšíte citlivost měřicího přístroje.

Pokud se zdá, že naměřená hodnota je násobkem očekávané hodnoty, může být vstupní signál zkreslený. Zkreslení může způsobit násobné spuštění měřiče frekvence. Výběrem vyššího rozsahu napětí (snížením citlivosti měřicího přístroje) můžete tento problém vyřešit. Obecně platí, že nejnižší zobrazená frekvence je správná.

Měření činitele využití

Činitel využití (nebo činitel zatížení) je procento času, kdy je signál nad nebo pod spouštěcí úrovní jednoho cyklu, jak ukazuje obrázek 25.

Režim činitele využití je optimalizován pro měření času zapnutí a vypnutí logických a spínacích signálů. Systémy, jako jsou elektronické systémy vstřikování paliva a přívody spínacího proudu, jsou řízeny impulzy různé šíře, které je možné kontrolovat měřením činitele využití.

Obrázek 25. Měření činitele využití

Pro měření činitele využití přepněte otočný přepínač na jednu z funkcí, umožňujících měření frekvence, zobrazených na obrázku 23. Stiskněte softwarové tlačítko označené **Menu** (Nabídka) a posuňte volič nabídky na položku nabídky označenou **Hz,%,ms**. Pak stiskněte softwarové tlačítko označené %.

Jak ukazuje obrázek 26, procento činitele využití je zobrazeno na primárním displeji, zatímco frekvence signálu se objeví na sekundárním displeji. Mini zobrazení měření indikuje hodnotu

voltů nebo ampérů vstupního signálu. Stupnice sleduje hodnotu voltů nebo ampérů signálu a ne hodnotu činitele využití.

Polarita impulzu je zobrazena vpravo od hodnoty činitele využití. J₽L indikuje pozitivní impulz a IJ indikuje negativní impulz. Pro změnu měřené polarity stiskněte softwarové tlačítko označené J₽L IJ Indikátor polarity se změní na opačnou polaritu.

Pro logický signál 5 V použijte stejnosměrný rozsah 5 V. Pro spínací signál 12 V v automobilech použijte stejnosměrný rozsah 50 V. Pro sinusiodální vlny použijte nejnižší střídavý nebo stejnosměrný rozsah, který nebude mít za následek několikanásobné spouštění. Manuálně vybraný nižší rozsah vstupu bude často měřit lépe než automaticky vabraný rozsah vstupu.

Měření šířky impulsu

Funkce šířky impulzu měří délku času, po nějž má signál nízkou nebo vysokou hodnotu, jak ukazuje obrázek 27. Měřená forma vlny musí být periodická; její podoba se musí opakovat v pravidelných časových intervalech.

Měřicí přístroj měří šířku impulzu od rozsahu 0,025 ms až 1250,0 ms.

Pro měření šířky impulzu přepněte otočný přepínač na jednu z funkcí, umožňujících měření frekvence, zobrazených na obrázku 23. Stiskněte softwarové tlačítko označené **Menu** (Nabídka) a posuňte volič nabídky na položku nabídky označenou **Hz,%,ms**. Pak stiskněte softwarové tlačítko označené **ms**.

Obrázek 27. Měření šířky impulzu

Primární displej indikuje šířku impulzu vstupního signálu v milisekundách. Frekvence signálu je zobrazena na sekundárním displeji. Mini zobrazení měření indikuje hodnotu voltů nebo ampérů vstupního signálu. Stupnice sleduje hodnotu voltů nebo ampérů signálu a ne hodnotu šířky impulzu.

Polarita šířky impulzu je zobrazena vpravo od hodnoty činitele využití. IL indikuje pozitivní šířku impulzu a Li indikuje negativní impulz. Pro změnu polarity stiskněte stiskněte tlačítko označené IL Li Indikátor polarity se změní na opačnou polaritu.

Možnosti změny nastavení měřicího přístroje

Měřicí přístroj má několik přednastavených funkcí, jako jsou formáty data a času, doba podsvícení a režimu úspory baterií a jazyk zobrazení. Tyto proměnné se nazývají možnosti nastavení měřicího přístroje. Mnohé možnosti nastavení ovlivňují fungování měřicího přístroje obecně a jsou aktivní ve všech funkcích. Ostatní jsou omezeny na jednu funkci nebo skupinu funkcí.

Přístup k možnostem nastavení je vždy možný pomocí softwarového tlačítka označeného **Setup** (Nastavení). Informace o měřícím přístroji, jako je například výrobní číslo nebo model. jsou také dostupné pomocí nabídky nastavení.

Možnosti obnovení nastavení měřicího přístroje

Pomocí nabídky nastavení lze obnovit výchozí hodnoty nastavení možností měřicího přístroje. Nabídku nastavení otevřete stisknutím softwarového tlačítka označeného **Setup** (Nastavení). Umístěte volič nabídky vedle položky nabídky označené **Reset** (Obnovit) a stiskněte softwarové tlačítko označené **Setup** (Nastavení). Objeví se zpráva žádající potvrzení operace obnovení. Pro provedení obnovení stiskněte softwarové tlačítko označené ${\bf OK}$.

Poznámka

Obnovení nastavení také obnoví posun teploty a referenční dB na jejich výchozí hodnotu.

Kromě obnovení nastavených proměnných stisknutím softwarového tlačítka označeného **Meter** (Měřící přístroj) také odstraníte všechny uložené obrazovky měření, obrazovky MIN MAX, obrazovky špiček a záznamy. Výchozí hodnota hodin měřicího přístroje je také obnovena.

Nastavení kontrastu displeje

Kontrast displeje měřicího přístroje lze nastavit pomocí nabídky nastavení měřicího přístroje. Nabídku nastavení otevřete stisknutím softwarového tlačítka označeného **Setup** (Nastavení) a umístěním voliče nabídky vedle položky nabídky označené **Contrast** (Kontrast). Stisknutím softwarového tlačítka označeného + (F1) zvýšíte kontrast displeje, zatímco tlačítkem označeným – (F2) kontrast snížíte.

Kontrast je také možné nastavit tlačítky (*) a (*), pokud nejsou používána pro pohyb mezi výběry nabídky.

Nastavení jazyka měřicího přístroje

Jazyk displeje měřicího přístroje je z výroby nastaven na angličtinu. Pro výběr jiného jazyka otevřete nabídku nastavení stisknutím softwarového tlačítka označeného **Setup** (Nastavení). Přesuňte volič nabídky na položku nabídky označenou **Display** (Displej). Pak stiskněte softwarové tlačítko označené **Format** (Formát, F2) pro otevření nabídky formátu. Poté (pokud již není vybrána) posuňte volič nabídky vlevo od položky nabídky označené **Language** (Jazyk) a stiskněte softwarové tlačítko označené Edit (Upravit). Aktuálně vybraný jazyk bude zvýrazněn a vpravo od jazyka se objeví ◆. Pomocí ④ a ☉ listujte dostupnými jazyky, pak stiskněte softwarové tlačítko označené OK a nastavte jazyk displeje měřicího přístroje. Stisknutím softwarového tlačítka označeného Close (Zavřít)se vrátíte do normálního provozu měřicího přístroje.

Nastavení data a času

Vnitřní hodiny měřícího přístroje jsou použity na displeji a pro označování zaznamenaných měření časem. Pro změnu data a času a jejich formátu zobrazení stiskněte softwarové tlačítko uznačené **Setup** (Nastavení). Přesuňte volič nabídky na položku nabídky označenou **Display** (Displej). Pro nastavení data a času stiskněte softwarové tlačítko označené **Date/Time** (Datum/čas) a otevřete nabídku data/času. Pak umístěte volič nabídky vedle položky **Set Date** (Nastavit datum) nebo položky **Set Time** (Nastavit čas) a stiskněte softwarové tlačítko označené **Edit** (Upravit). Pomocí () a () umístěte kurzor na datum nebo čas a proveďte nastavení. Pomocí () a © změňte vybranou hodnotu data nebo času. Pro dokončení akce stiskněte **OK**.

Nastavení doby podsvícení a automatického vypnutí

 přednastavených hodnot. Stiskněte **OFF** (Vypnout) pro deaktivaci funkce doby vypnutí. Pro nastavení vybraného času stiskněte softwarové tlačítko označené **OK**. Stisknutím softwarového tlačítka označeného **Close** (Zavřít) se vrátíte do normálního provozu měřicího přístroje.

Režim úspory baterií je používán, když měřicí přístroj provádí relaci záznamu nebo během funkcí MIN MAX, záznam špičky a AutoHold. Režim úspory baterií vypne napájení obvodů (včetně displeje), které nejsou používány pro provoz těchto záznamových relací. Pro režim záznamu je doba vypnutí nastavena na pět minut a je aktivována pouze pokud je doba automatického vypnutí přístroje nastavena na jinou hodnotu než Off (Vypnuto). Pro MIN MAX, špičku a AutoHold je doba vypnutí dobou nastavenou pro automatické vypnutí přístroje.

Nastavení vlastní reference dBm

Pro přidání vlastní referenční hodnoty dBm stiskněte softwarové tlačítko označené **Setup** (Nastavení) a umístěte volič nabídky vedle položky nabídky označené **Instrument** (Nástroj). Pak stiskněte softwarové tlačítko označené **Instrument** (Nástroj) a umístěte volič nabídky vedle položky nabídky označené **dBm Reference** (Referenční hodnota dBm). Pak stiskněte softwarové tlačítko označené **Edit** (Upravit). Pomocí () a) umístěte kurzor na dané číslo. Stiskněte • a • pro zvyšování nebo snižování čísel. Po zobrazení požadované reference stiskněte softwarové tlačítko označené **OK** a přidejte tuto hodnotu do seznamu referencí dBm. Je povolena pouze jedna vlastní hodnota. Stisknutím softwarového tlačítka označeného **Close** (Zavřít)se vrátíte do normálního provozu měřicího přístroje.

Deaktivace a aktivace bzučáku

Bzučák měřicího přístroje upozorňuje uživatele na přítomnost zpráv, chyb obsluhy jako je nesprávné připojení vodičů pro danou funkci a na nově zjištěné hodnoty pro záznam MIN MAX a špiček. I když bzučák slouží i pro funkci průchodnosti, nastavení bzučáku pro tuto funkci se neprovádí pomocí této možnosti nastavení. Pro další informace o bzučáku průchodnosti viz "Zkoušení průchodnosti".

Pro aktivaci nebo deaktivaci bzučáku měřicího přístroje stiskněte softwarové tlačítko označené **Setup** (Nastavení) a umístěte volič nabídky vedle položky nabídky označené **Instrument** (Nástroj). Pak stiskněte softwarové tlačítko označené **Instrument** (Nástroj) a umístěte volič nabídky vedle položky nabídky označené **Beeper** (Bzučák). Pro přesun kurzoru do výběru zapnuto nebo vypnuto stiskněte softwarové tlačítko označené **Edit** (Upravit). Pomocí a přepněte bzučák do stavu zapnuto nebo vypnuto. Stav bzučáku je indikován na stavové liště displeje (viz položka 12 v obrázku 2).

Aktivace a deaktivace režimu vyhlazování

Pokud je vstupní střídavý signál zašuměný nebo se prudce mění, může režim vyhlazování zobrazit stabilnější hodnotu. Pro aktivaci nebo deaktivaci režimu vyhlazování stiskněte softwarové tlačítko označené **Setup** (Nastavení) a umístěte volič nabídky vedle položky nabídky označené **Instrument** (Nástroj). Pak stiskněte softwarové tlačítko označené **Instrument** (Nástroj) a umístěte volič nabídky vedle položky nabídky označené **Smoothing** (Vyhlazování). Pro přesun kurzoru do výběru zapnuto nebo vypnuto stiskněte softwarové tlačítko označené **Edit** (Upravit). Pomocí (a vzapněte nebo vypněte režim vyhlazování.

Použití dalších voleb nastavení

Další volby nastavení udržují informace o měřicím přístroji stejně jako některé obecné funkce měřicího přístroje. Volba **Meter Info** (Informace o měřicím přístroji) uvádí sériové číslo, číslo modelu, verzi firmwaru, datum kalibrace a čítač kalibrace. Po načtení

těchto informací do přístroje ze softwaru FlukeView® Forms se zobrazí také jméno operátora, název společnosti, název lokality a kontaktní informace.

Volba **Calibration** (Kalibrace) umožňuje, aby kvalifikovaný technik zadal heslo, které umožní kalibraci měřicího přístroje. Informace o kalibraci měřicího přístroje naleznete v dokumentu 287/289 *Calibration Information* (Informace o kalibraci).

Volba **Secure Erase** (Bezpečné vymazání) umožňuje vymazání uživatelem přístupné paměti tak, jak to vyžadují směrnice Homeland Security. Při provedení tohoto nízkoúrovňového vymazání se kalibrace měřicího přístroje neztratí.

Jakmile jsou vytvořeny nové funkce měřicího přístroje, lze poslední verzi softwaru stáhnout z webové stránky podpory měřicího přístroje Fluke pomocí volby **Software Update** (Aktualizace softwaru).

Využití paměti

Měřicí přístroj má paměť pro ukládání jednotlivých měření, měření shromážděných během konkrétní doby a událostí měření.

Všechna uložená data je možné prohlížet v měřicím přístroji nebo je stáhnout do počítače pomocí infračerveného (IR) komunikačního zařízení měřicího přístroje za použití softwaru FlukeView™ Forms. V části "Používání komunikace" najdete více informací o komunikaci s PC pomocí softwaru FlukeView Forms.

Ukládání jednotlivých dat měření

Stisknutím softwarového tlačítka označeného **Save** (Uložit) je pro všechny funkce měření ukládán snímek obrazovky dat . Displej se pozastaví (vyjma mini zobrazení měření na stavové

liště) a objeví se nabídka uložení. Dvě volby umožňují buď uložení dat pod předem zvoleným názvem nebo výběr jiného názvu stisknutím softwarového tlačítka označeného **+Name** (+Název). Viz část "Pojmenování uložených dat" dále v této příručce. Zobrazená data jsou uložena spolu s datem a časem, kdy bylo uložení provedeno.

Pro MIN MAX a špičky lze zobrazená souhrnná data uložit kdykoli, stisknutím softwarového tlačítka označeného **Save** (Uložit), čímž bude uchován snímek relace v danou chvíli.

Pojmenování uložených dat

Měřicí přístroj má seznam osmi přednastavených názvů, pod nimiž data měření ukládá. Pod stejným názvem lze uložit více záznamů. Například jeden přednastavený název je Save. Během prvního ukládání pod tímto názvem bude pro pojmenování záznamu v paměti použit název Save-1. Při dalším použití názvu Save se číslo změni na 2 a záznam bude uložen pod názvem Save-2. Automaticky narůstající číslo může být nastaveno zpět na 1 umístěním voliče nabídky vedle názvu uložení a stisknutím softwarového tlačítka označeného **Reset #** (Obnovení #).

Pro uložení snímku obrazovky, relace záznamu, nebo relace záznamu MIN MAX nebo špiček, stiskněte softwarové tlačítko označené **Save** (Uložit). Pro výběr názvu ze seznamu předvoleb stiskněte **+Name** (+Název). Pro uložení pod stejným názvem jako dříve, ale s následujícím číslem, stiskněte softwarové tlačítko označené **Save** (Uložit). Druhá metoda usnadňuje uložení série měření jednoduchým dvojím stisknutím softwarové tlačítka **Save** (Uložit) pro každou operaci ukládání.

Pro vybrání názvu pro operaci uložení umístěte pomocí kurzorových tlačítek volič nabídky vedle požadovaného názvu. Pak stiskněte softwarové tlačítko označené **Save** (Uložit).

Prohlížení dat z paměti

Prohlížení dat uložených v paměti měřicího přístroje se provádí pomocí nabídky uložení. Stiskněte softwarové tlačítko označené **Save** (Uložit). Umístěte volič nabídky vedle položky nabídky označené **View Memory** (Prohlížet paměť) a stiskněte softwarové tlačítko označené **View** (Prohlížet).

Poznámka

Pro prohlížení dat uložených v paměti nesmí měřicí přístroj zaznamenávat nebo provádět relaci záznamu MIN MAX nebo špiček.

Měřicí přístroj rozděluje uložená data do čtyř různých kategorií: Měření, MIN MAX, špička a záznam. Pomocí kurzorových tlačítek umístěte volič nabídky vedle požadované kategorie uložených dat a stiskněte softwarové tlačítko označené **View** (Prohlížet). Měřicí přístroj zobrazí poslední uložený záznam pro vybranou kategorii dat.

Pokud existují dříve uložené záznamy, stiskněte softwarové tlačítko označené **Prev** (Předchozí) nebo () pro stránkování dříve uloženými záznamy. Stisknutím softwarového tlačítka označeného **Next** (Další) nebo () se posunete stránkami opačným směrem. Stisknutím tlačítka **Close** (Zavřít) se vrátíte do normálního provozu měřicího přístroje.

Prohlížení snímků a souhrnných dat

Stisknutím tlačítka **View** (Prohlížet) po vybrání kategorie MIN MAX, špička nebo měření, popsané v části Prohlížení dat paměti výše, pouze zobrazíte informace uložené v době, kdy bylo uložení provedeno. Při prohlížení je displej rekonstruován z těchto dat.

Prohlížení dat trendů

Pro kategorii záznamu jsou data intervalů a událostí, uložená během relace záznamu, prohlížena na měřicím přístroji pomocí zobrazení grafu trendu, podobně jako u páskového zapisovače. Vysvětlení dat intervalu a události najdete v části "Záznam dat měření" dále v této příručce.

Po výběru kategorie záznamu, popsaném v části Prohlížení dat paměti výše, a po stisknutí tlačítka **View** (Prohlížet) bude zobrazena souhrnná obrazovka relace záznamu (viz tabulka 9). Pro zobrazení zaznamenaných dat v zobrazení grafu trendu stiskněte softwarové tlačítko označené **Trend**. Tabulka 7 ukazuje zobrazení trendu zároveň s popisem každého komponentu.

Pro prohlížení dat uložených v jednotlivých záznamech, které představují trend, posuňte kurzor na jakékoli místo grafu stisknutím () nebo (). Ve spodní části kurzoru se zobrazí hodnota a časové razítko minimální hodnoty, maximální hodnoty a koncové zaznamenané hodnoty vybraného záznamu. Všechna data obsažená v záznamu je možné prohlížet pouze na PC pomocí softwaru FlukeView Forms.

Poznámka

Časové značky osy X se zobrazí jako uplynulý čas, zatímco časové razítko zobrazené pod kurzorem je v absolutním čase.

Tabulka 7. Zobrazení dat trendu

Přiblížení v datech trendu

V průběhu prohlížení dat trendu stisknutím nebo v přiblížíte nebo oddálíte data umístěná kolem kurzoru. Každé stisknutí sníží časové období osy x na polovinu, aby se objevilo více podrobností. Každé stisknutí vzdvojnásobí časové období, dokud se nezobrazí zaznamenaná data. Úroveň zoomu se zobrazí v pravém horním rohu displeje. X1 označuje trend zobrazeného kompletního období záznamu. X2 je polovina času záznamu. X3 je čtvrtina času záznamu. Toto zvětšování může pokračovat až do doby, kdy je časové období osy x jedna sekunda.

Mazání uložených dat měření

Mazání dat uložených v paměti měřicího přístroje se provádí pomocí nabídky uložení. Stiskněte softwarové tlačítko označené **Save** (Uložit). K výběru položky pro vymazání použijte softwarová tlačítka **Prev** (Předchozí) a **Next** (Další).

Měřicí přístroj rozděluje uložená data do čtyř různých kategorií: Měření, MIN MAX, špička a záznam. Pomocí kurzorových tlačítek umístěte volič nabídky vedle kategorie uložených dat a stiskněte softwarové tlačítko označené **View** (Prohlížet).

Stisknutím softwarového tlačítka **Delete All** (Vymazat vše) vymažete všechna uložená data ve vybrané kategorii uložených dat. Nebo stiskněte softwarové tlačítko označené **View** (Prohlížet). Po přijetí potvrzující zprávy použijte softwarová tlačítka označená **Prev** (Předchozí) a **Next** (Další) a vyberte položku pro vymazání. Pak stiskněte softwarové tlačítko označené **Delete** (Vymazat). Dřív, než bude cokoli z paměti vymazáno, se objeví zpráva žádající potvrzení vymazání.

Záznam dat měření

Funkce záznamu měřícího přístroje shromažďuje informace po uživatelem stanovenou dobu. Shromažďování informací se nazývá relace záznamu. Relace záznamu se skládá z jednoho nebo více záznamů měření. Každý záznam obsahuje informace souhrnu měření, pokrývající délku trvání záznamu.

Každý záznam obsahuje minimální, maximální a průměrnou hodnotu, zjištěnou během doby záznamu. Vedle hodnot měření, jsou také zaznamenány časové značky každého záznamu. Časová značka sestává z počátečního času záznamu, času zjištění maximální hodnoty, času zjištění minimální hodnoty a konečného času záznamu.

Některá data záznamu je možné prohlížet pomocí funkce prohlížení dat trendu měřicího přístroje. Prohlížení všech dat obsažených v záznamu je možné pouze na PC pomocí softwaru FlukeView Forms.

Existují dva typy záznamů měření, zaznamenaných během relace záznamu: interval a událost. Záznam intervalu zahrnuje uživatelem specifikovaný interval. Záznam události má trvání, stanovené aktivitou měřeného signálu a může přerušit záznam intervalu. I pokud je záznam intervalu přerušen, bude záznam ukončen a po vypršení plánovaného časového intervalu bude otevřen nový záznam intervalu.

Záznamy událostí jsou spuštěny změnou měřeného signálu o víc než nastavitelné procento hodnoty naměřené na počátku záznamu. Toto nastavitelné procento se nazývá Prahová hodnota události pro záznam. Vedle výše uvedených hodnot a časových značek záznam také ukládá informaci, zda signál byl stabilní nebo nestabilní během trvání záznamu události. Aby byl klasifikován jako stabilní, musí měřený signál zůstat v rámci zvoleného procenta počáteční hodnoty po dobu alespoň jedné sekundy. Měřená data, překračující procentní prahovou úroveň v průběhu méně než jedné sekundy, jsou klasifikována jako nestabilní. Více informací najdete v části "Nastavení prahové hodnoty události" dále v této příručce.

Poznámka

Pro měření teploty tvoří prahová úroveň AutoHold procento ze 100 stupňů. Výchozí prahová hodnota AutoHold jsou 4% ze 100 stupňů neboli 4 stupně Celsia nebo Fahrenheita.

Záznam skončí, pokud dojde k jedné z následujících okolností:

- Začátek nového záznam intervalu.
- Přetížení rozsahu, způsobující změnu rozsahu měřicího přístroje.
- Jiné přetížení v manuálním rozsahu nebo v nejvyšším rozsahu.
- Měřená data se změní o více než 4 % hodnoty naměřené na začátku záznamu.
- Ukončení relace záznamu.

Ukončení relace záznamu může být způsobeno jednou z následujících okolností:

- Vypršení doby relace záznamu.
- Manuální zastavení relace záznamu.

Nastavení relace záznamu

Před zahájením relace záznamu nastavte měřicí přístroj pro zaznamenávaná měření. Pokud je to potřeba, změňte prahovou hodnotu události (viz část "Nastavení prahové hodnoty události" dále v této příručce). Stisknutím softwarového tlačítka **Save** (Uložit) otevřete nabídku uložení. Pomocí kurzorových tlačítek posuňte volič nabídky vedle položky nabídky označené **Record** (Záznam) a stisknutím softwarového tlačítka označeného **Record** (Záznam) otevřete konfigurační displej.

Pro nastavení relace záznamu existují dvě proměnné: Doba trvání relace záznamu a doba trvání vzorkovacího intervalu. Obě proměnné ovlivňují délku záznamu a počet zaznamenaných intervalů. Tyto dvě proměnné se mohou navzájem ovlivňovat, v daném nastavení může jedna proměnná přizpůsobit druhou proměnnou tak, aby se relace záznamu vešla do dostupné paměti. Procento dostupné paměti, které je k dispozici na začátku relace záznamu, se zobrazí pod nastaveními doby trvání a vzorkovacího intervalu. Volitelné hodnoty lze přizpůsobit následujícím způsobem:

Vzorkovací interval je možné nastavit od jedné sekundy po 99 minut a 59 sekund. Trvání relace záznamu lze nastavit od jedné minuty po 99 dní 23 hodin 59 minut.

Tabulka 8. Zobrazení záznamu

Měřicí přístroj přiděluje paměť způsobem, zaručujícím záznam všech uživatelem specifikovaných vzorkovacích intervalů. Záznamy událostí budou také zachycovány, dokud měřicí přístroj nedetekuje využití vyhrazené paměti. V této chvíli nebudou události zaznamenány, ale počitadlo událostí bude nadále fungovat a bude udávat celkový počet událostí, ke kterým došlo. Pro indikaci tohoto stavu se objeví za čítačem událostí znaménko plus (+).

Poznámka

Maximální počet zaznamenaných vzorkovacích intervalů je 10 000. Maximální počet zaznamenaných událostí je 15 000 minus počet vzorkovacích intervalů. Tato maximální čísla se úměrně sníží, pokud je dostupná paměť malá.

Abyste změnili kteroukoli ze dvou proměnných záznamu, použijte kurzorová tlačítka pro umístění voliče nabídky vedle požadované položky nabídky a stiskněte softwarové tlačítko označené **Edit** (Upravit). Pohybujte se pomocí () © a © a nastavte každé číslo vybrané proměnné.

Pokud je stav baterie jiný než plný, objeví se zpráva v dolní části nabídky záznamu, upozorňující vás před zahájením relace záznamu na stav baterie.

Nastavení prahové hodnoty události

Stisknutím softwarového tlačítka **Save** (Uložit) otevřete nabídku uložení. Pomocí kurzorových tlačítek posuňte volič nabídky vedle položky nabídky označené **Record** (Záznam) a stisknutím softwarového tlačítka označeného **Recording** (Záznam) otevřete obrazovku nastavení záznamu. Pomocí kurzorových tlačítek posuňte volič nabídky vedle položky označené **Event Threshold for Recording** a stiskněte softwarové tlačítko označené **Edit**.

Stisknutím enebo rprocházejte prahovými hodnotami události. Po výběru požadované volby stiskněte softwarové tlačítko **Close**.

Zahájení relace záznamu

Po nastavení proměnných stiskněte softwarové tlačítko označené **Start**, na displeji se objeví **Recording** a bude blikat zelená LED dioda, okolo tlačítka napájení (⁽⁽ⁱⁱⁱ⁾)). Tabulka 8 ukazuje displej záznamu a popisuje zobrazené informace.

Funkce softwarových tlačítek Menu, Setup, Reference, and Temperature Offset (Nabídka, Nastavení, Reference a Posun teploty) nejsou během záznamu měřicího přístroje dostupná. To zaručuje konzistenci měření v rámci relací záznamů.

Pět minut po stisknutí tlačítka nebo ukončení IR komunikace může měřicí přístroj, pro prodloužení životnosti baterií během nahrávání, přejít do režimu úspory baterií. Pokud je doba automatického vypínání nastavena na never (nikdy), je režim úspory baterií deaktivován.

Zastavení relace záznamu

Relace záznamu bude pokračovat do zaplnění přidělené paměti, vyčerpání baterií, přepnutí otočného přepínače, zasunutí nebo odpojení sondy z konekrotu A nebo mA/µA nebo do ukončení relace stisknutím softwarového tlačítka označeného **Stop**.

Tabulka 9 ukazuje displej a popisuje zobrazené informace po zastavení relace záznamu.

Po zastavení relace záznamu vyberte uložení relace záznamu, prohlížení dat trendu (viz část "Prohlížení dat trendů") nebo uzavření relace záznamu. Pokud nebyla relace uložena před stisknutím softwarového tlačítka **Close** (Zavřít), budou data ztracena.

Tabulka 9. Zobrazení zastavení záznamu

Používání komunikace

Pro přenos obsahu paměti měřicího přístroje do PC můžete použít komunikační připojení IR a software *FlukeView Forms*.

Při používání IR (infračerveného) komunikačního připojení PC k měřicímu přístroji, se obraťte na *Průvodce instalací FlukeView Forms* nebo on-line nápovědu.

Poznámka

Měřicí přístroj se přihlásí v režimu reálného času k připojenému počítači se spuštěným software FlukeView Forms. Navíc měřicí přístroj uživateli umožňuje přihlásit se k vnitřní paměti a připojit se k počítači pro stažení později.

Software FlukeView Forms umožňuje uspořádání dat do standardních (výchozích) nebo vlastních formulářů. Formulář zobrazí data v podobě tabulky a grafu, spolu s poznámkami uživatele. Tyto formuláře můžete použít pro splnění požadavků ISO-9000 a další dokumentace.

Chybové zprávy

Tabulka 10 uvádí některé chybové zprávy, které měřicí přístroj zobrazuje, a podmínky, které mohly chybu způsobit.

Zpráva "	Podmínky
Leads connected incorrectly. (Nesprávně připojené vodiče.)	Vodič je v konektoru A nebo mA/µA, ale otočný přepínač není v pozici odpovídající A/mA or µA.
	Vodiče jsou v obou konektorech A a mA/µA.
	Otočný přepínač je nastaven na měření proudu, ale ani v jednom z konektorů A nebo mA/μA není vodič.
Open Thermocouple (Otevřený termoelektrický článek)	Vodič termoelektrického článku je rozpojen nebo je uzel termoelektrického článku zkorodovaný.
	Ke vstupu měřicího přístroje není připojen žádný termoelektrický článek.
Batteries low – function unavailable. (Nízký stav baterií – funkce je nedostupná.)	Vybraná funkce vyžaduje vyšší stav baterií, aby fungovala v rámci parametrů.
Error: Date and Time need to be reset. (Chyba: je nutné obnovit čas a datum.)	Baterie byly vyjmuty na příliš dlouhou dobu a datum a čas měřicího přístroje byly ztraceny.
Not enough memory for operation. (Pro operaci není dostatek paměti.)	Měřicí přístroj nemá dostatek paměti pro uložení informací v okamžiku spouštění relace záznamu nebo ukládání dat obrazovky.
Batteries critically low, replace now. (Stav baterií je kriticky nízký, okamžitě je vyměňte.)	Stav baterií je příliž nízký pro provádění měření v rámci uvedených parametrů. Měřicí přístroj se během 15 sekund po zobrazení této zpravy vypne, aby bylo uchováno datum a čas měřicího přístroje.

Tabulka 10. Chybové zprávy

Údržba

∆∆Výstraha

Aby se zabránilo úrazu elektrickým proudem nebo zranění osob, může opravy nebo servis, který není popsaný v této příručce, provádět pouze kvalifikovaný personál tak, jak je popsáno v 287/289 Informace o servisu.

Obecná údržba

Pravidelně otírejte pouzdro přístroje navlhčeným hadříkem a jemným saponátem. Nepoužívejte abraziva, izopropyl alkohol nebo rozpouštědla.

Prach nebo vlhkost v kontaktech může ovlivnit měření a bezdůvodně aktivovat funkci výstrahy vstupu. Kontakty čistěte následujícím způsobem:

- 1. Vypněte měřicí přístroj a odpojte všechny měřící vodiče.
- 2. Odstraňte veškeré znečistění ve zdířkách svorek.
- Navlhčete čistý hadřík jemným čisticím prostředkem a vodou. Vytřete hadříkem každý kontakt. Vysušte kontakt stlačeným vzduchem, abyste z kontaktu vypudili vodu a čisticí prostředek.

Zkoušení pojistek

Jak ukazuje obrázek 28, s měřicím přístrojem ve funkci Ω_{nS}^{inj} , zapojte měřící vodič do konektoru $I^{n++}V\Omega$ a položte konec vodiče na druhý konec měřícího vodiče, proti kovové části vstupního konektoru proudu. Pokud se objeví zpráva "Leads Connected Incorrectly" (Nesprávně připojené vodiče), byl konec sondy zasunutý příliš daleko do vstupního proudového konektoru. Vysuňte vodič kousek zpět, dokud hlášení nezmizí a na displeji měřicího přístroje se neobjeví buď údaj OL nebo hodnota odporu. Hodnota odporu musí být v rozmezí 0,00 a 0,50 Ω pro konektor A a 10,00 ±0,05 k Ω pro konektor "Å.

∕∆∕∑Výstraha

Dříve, než začnete vyměňovat baterie nebo pojistky, odpojte testovací kabely a jakékoliv připojení přístroje k jiným zařízením. Zabráníte tak úrazu elektrickým proudem nebo újmě na zdraví. Aby se předešlo poškození nebo zranění, instalujte *pouze* náhradní pojistky, specifikované společností Fluke, s odpovídajícími parametry proudu, napětí a rychlosti, zobrazenými v tabulce 11.

Obrázek 28. Zkoušení tavných pojistek

Výměna baterií

Podívejte se na obrázek 30 a vyměňte baterie následujícím způsobem:

- 1. Vypněte měřící přístroj a odpojte měřící vodiče od kontaktů.
- Použijte plochý šroubovák k otočení šroubu krytu přihrádky na baterie o půl otáčky proti směru hodinových ručiček a vyjměte kryt přihrádky na baterie.
- Vyměňte baterie za baterie AA 1,5 V (NEDA 15A IEC LR6). Dodržujte správnou polaritu.
- Nainstalujte zpět kryt přihrádky na baterie a zajistěte jej otočením šroubu o půl otáčky ve směru hodinových ručiček.

Výměna pojistek

Podle obrázku 30, zkontrolujte nebo vyměňte pojistky měřicího přístroje následujícím způsobem:

- 1. Vypněte měřicí přístroj a odpojte měřící vodiče od kontaktů.
- Použijte plochý šroubovák k otočení šroubu krytu přihrádky na baterie o půl otáčky proti směru hodinových ručiček a vyjměte kryt přihrádky na baterie.
- 3. Jemně vyjměte pojistku ze svorek.
- Instalujte *pouze* náhradní pojistky, specifikované společností Fluke, s odpovídajícími parametry proudu, napětí a přerušení, zobrazenými v tabulce 11.
- Nainstalujte zpět kryt přihrádky na baterie a zajistěte jej otočením šroubu o půl otáčky ve směru hodinových ručiček.

Uložení měřících vodičů

Obrázek 29 ukazuje správnou metodu skladování měřících vodičů s měřicím přístrojem.

Obrázek 29. Skladování měřících vodičů

Obrázek 30. Výměna baterií a pojistek

http://www.elso.sk

V případě potíží

Pokud se zdá, že měřicí přístroj nefunguje správně:

- 1. Zkontrolujte, že jsou všecvhny baterie instalovány se správnou polaritou.
- Zkontrolujte, zda není pouzdro poškozené. Pokud je zjištěno poškození, kontaktujte společnost Fluke. Viz část "Kontakt na společnost Fluke" dříve v této příručce.
- Zkontrolujte a vyměňte (dle potřeby) baterie, pojistky a měřící vodiče.
- 4. Pro ověření správné funkce se obraťte na příručku.
- Pokud měřicí přístroj stále nefunguje, bezpečně jej zabalte a pošlete jej, se zapaceným poštovným, na místo uvedené příslušným kontaktem společnosti Fluke. Přiložte popis problému. Společnost Fluke nepřebírá odpovědnost za poškození při dopravě.

Měřicí přístroj v záruce bude opraven nebo vyměněn (dle uvážení společnosti Fluke) a bezplatně vrácen. Záruční podmínky jsou uvedeny na registrační kartě.
Servis a náhradní díly

Náhradní díly a příslušenství jsou uvedeny v tabulce 11 a 12 a na obrázku 31. Pro objednávku dílů nebo příslušenství viz část "Kontakt na společnost Fluke". the merani

Položka	a pro hitter	Vysvětlivky	Množ.	Číslo dílu/modelu Fluke
1.500	Knoflík		1	2798434
2	Krytka		1	2798418 (289) 2798429 (287)
3	Klávesnice		1	2578234
4	Těsnící krou	žek	1	2740185
5	Vrchní část	pouzdra	1	2578178
6	Šroub, křížový			2743764
7	Maska, LCD		1	2760673 (289) 2798407 (287)
8	Modul LCD		1	2734828
9	Tlumič otřes	ů	3	2793516
10	Pružinová zarážka			2723772
11	Pouzdro RSOB, horní díl			2578283
10	Ochranný	Horní	1	2578252
12	kryt	Spodní	1	2578265

Tabulka 11. Náhradní díly

 $\mathcal{D}_{\mathcal{A}}$

Tabulka 11. Náhradní díly (pokračování)

Položka	Vysvětlivky	Množ.	Číslo dílu/modelu Fluke			
13	Pouzdro RSOB, spodní díl	1	2578290			
14	Spodní část pouzdra	1	2578184			
15	Tlumič otřesů, přihrádka na baterie	1	2793525			
16	Kontakt baterií, negativní	2	2578375			
17	Kontakt baterií, pozitivní	1	2578353			
18	^C APojistka (F1), 0,440 A, 1000 V, FAST, Charakteristika přerušení 10 kA	1	943121			
19	▲Pojistka (F2), 11 A, 1000 V, FAST, Charakteristika přerušení 20 kA	1	803293			
20	Baterie, 1,5 V NEDA 15C/15F nebo IEC R6S	6	376756			
21	Sestava krytu přihrádky na baterie (včetně sklopné přepážky)	1	2824477			
22	Šroub, křížový	7	853668			
23	Sada pravoúhlých měřících vodičů TL71	1	TL71			
24	Svorka krokodýlek, jedna černá a jedna červená	2	1670652 (Černá) 1670641 (Červená)			
25	Příručka, balení příruček, Fluke 287/289	1	2748851			
26	287/289 Uživatelská příručka na CD ^[1]	1	2748872			
🛕 V zájmi	▲ V zájmu zajištění bezpečnosti používejte pouze přesnou náhradu.					
[1] Uživate Produc	 Uživatelská příručka a příručka Začínáme jsou k dispozici na adrese <u>www.Fluke.com</u>. Klepněte na Support (Podpora) a potom Product Manuals (Manuály). 					

Obrázek 31. Vyměnitelné díly

 n_{\sim}

Tabulka 12. Příslušenství

Položka	Vysvětlivky
AC72	Svorky krokodýlek pro použití se zkušebními vodiči TL75
AC220	Svorky krokodýlek s bezpečnostní rukojetí a širokými čelistmi
80BK-A	80BK-A Integrated DMM Temperature Probe
TPAK	Magnetický závěs ToolPak
C25	Přepravní pouzdro, měkké
TL76	Zkušební vodiče o průměru 4 mm
TL220	Sada průmyslových zkušebních vodičů
TL224	Sada zkušebních vodičů, tepelně odolný silikon
TP1	Zkušební sondy, ploché, tenké
TP4	Zkušební sondy, průměr 4 mm, tenké
Příslušens	tví Fluke je k dostání u autorizovaných distributorů Fluke.

Všeobecné specifikace

Maximální napětí mezi jedním kontakter	n a zemněním: 1000 V
▲ Ochrana pojistkou pro vstupy mA ne	bo μA0,44 A (44/100 A, 440 mA), pojistka 1000 V FAST, pouze díl specifikovaný Fluke
▲ Ochrana pojistkou pro vstup A	11 A, pojistka 1000 V FAST, pouze díl specifikovaný Fluke
Typ baterie	6 AA alkalické baterie, NEDA 15A IEC LR6
Životnost baterií	minimálně 100 hodin. 200 hodin v režimu protokolování
Teplota	
Provoz	20 °C až 55 °C
Skladování	40 °C až 60 °C
Relativní vlhkost	0 % až 90 % (0 °C až 37 °C), 0 % až 65 % (37 °C až 45 °C), 0 % až 45 % (45 °C až 55°C)
Nadmořská výška	
Provozní	
Skladování	10 000 m
Teplotní koeficient	0,05 X (specifikovaná přesnost) /°C (<18 °C nebo >28 °C)
Vibrace	Náhodné vibrace dle MIL-PRF-28800F Class 2
Otřes	pád z 1 metru dle 2. vydání normy IEC/EN 61010-1
Rozměry (VxŠxD)	
Hmotnost	
Bezpečnostní normy	
US ANSI	V souladu s ANSI/ISA 82.02.01 (61010-1) 2004
CSA	CAN/CSA-C22.2 No 61010-1-04 to 1000 V Kategorie měřidla III a 600 V Kategorie měřidla IV, Stupeň znečištění 2
UL	UL 61010 (2003)
Evropské označení shody (CE)	2. vydání normy IEC/EN 61010-1 Stupeň znečištění 2

Normy elektromagnetické kompatibility (EMC)

Evropská EMC	EN61326-1
Australská EMC	N10140
US FCC	FCC CFR47: část 15, TŘÍDA A
Certifikace	UL, CE, CSA, 😋 (N10140), 🎯 🗲

Podrobné specifikace

Přesnost:

Přesnost je specifikována pro období jednoho roku po kalibraci, při 18 °C až 28 °C (64 °F až 82 °F), s relativní vlhkostí 90 %. Parametry přesnosti jsou stanoveny na: ±([% měření]+[počet nejméně důležitých čísel]). Parametry přesnosti předpokládají stabilitu teploty prostředí na ±1 °C. Pro změny teploty prostředí ±5 °C, platí charakteristiky přesnosti po 2 hodinách. Chcete-li získat úplnou přesnost při měření DC mV, teploty, Ohmů a Lo (50) Ohmů, nechte měřicí přístroj stabilizovat 20 minut po použití funkce LoZ.

Skutečné rms:

Parametry AC mV, AC V, AC µA, AC mA, a AC A jsou vázány na střídavý proud, skutečné rms, a jsou specifikovány od 2 % rozsahu po 100 % rozsahu, vyjma rozsahu 10 A, specifikovaného od 10 % po 100 % rozsahu.

Činitel amplitudy:

Přesnost je specifikována se střídavým činitelem amplitudy na ≤ 3,0 plného rozsahu, lineárně narůstající na 5,0 v polovině rozsahu, vyjma rozsahu 1000 V, kde při plném rozsahu činí 1,5, lineárně narůstající na 3,0 v polovině rozsahu a 500 mV a 5000 µA, kde představuje ≤3,0 při 80 % plného rozsahu, lineárně narůstající na 5,0 v polovině rozsahu. Pro nesinusoidální formy vln přidejte ±(0,3 % rozsahu a 0,1 % měření).

Dno AC:

Při zkratování vstupních vodičů ve střídavé funkci může měřicí přístroj zobrazit zbytkovou hodnotu až 200 krát. 200 zbytkových měření způsobí pouze 20 změn měření při 2 % rozsahu. Použití REL pro posun tohoto měření může vytvořit mnohem větší konstantní chybu u pozdějších měření.

AC+DC:

AC+DC je definováno jako $\sqrt{ac^2 + dc^2}$

Parametry střídavého napětí

Funkoo	Borooh	Bozličaní			Přesnost		
Fullkce	Nozsan	Roziiseili	20 až 45 Hz	45 až 65 Hz	65 Hz až 10 kHz	10 až 20 kHz	20 až 100 kHz
AC mV	50 mV ^[1]	0,001 mV	1,5 % + 60	0,3 % + 25	0,4 % + 25	0,7 % + 40	3,5 % + 40 ^[5]
	500 mV	0,01 mV	1,5 % + 60	0,3 % + 25	0,4 % + 25	0,7 % + 40	3,5 % + 40
ACV	5 V ^[1]	0,0001 V	1,5 % + 60	0,3 % + 25	0,6 % + 25	1,5 % + 40	3,5 % + 40 ^[5]
	50 V ^[1]	0,001 V	1,5 % + 60	0,3 % + 25	0,4 % + 25	0,7 % + 40	3,5 % + 40
	500 V ^[1]	0,01 V	1,5 % + 60	0,3 % + 25	0,4 % + 25	Nespecifikováno	Nespecifikováno
	1000 V	0,1 V	1,5 % + 60	0,3 % + 25	0,4 % + 25	Nespecifikováno	Nespecifikováno
dBV	-70 až -62 dB ^[3]	0,01 dB	3 dB	1,5 dB	2 dB	2 dB	3 dB
	-62 až -52 dB ^[3]	0,01 dB	1,5 dB	1,0 dB	1 dB	1 dB	2 dB
	-52 až -6 dB ^[3]	0,01 dB	0,2 dB	0,1 dB	0,1 dB	0,2 dB	0,8 dB
	-6 až +34 dB ^[3]	0,01 dB	0,2 dB	0,1 dB	0,1 dB	0,2 dB	0,8 dB
	34 až 60 dB ^[3]	0,01 dB	0,2 dB	0,1 dB	0,1 dB	Nespecifikováno	Nespecifikováno
Filtr propouštějící nízké kmitočty ^[4]			2 % + 80	2 % + 40	2 % +10 -6 % -60 ^[2]	Nespecifikováno	Nespecifikováno
$\widetilde{\mathbf{V}}^{LoZ_{[4]}}$	1000 V	0,1 V	2 % + 80	2 % + 40	2 % + 40 ^[6]	Nespecifikováno	Nespecifikováno

[1] Pod 5 % rozsahu, přidejte 20 cyklů.

[2] Parametr narůstá lineárně od -2 % při 200 Hz po -6 % při 440 Hz. Rozsah je omezen po 440 Hz.

[3] dBm (600 Ω) je specifikováno přidáním +2,2 dB k hodnotám rozsahu dBV.

[4] Pouze 289.

[5] Přidejte 2,5 % nad 65 kHz.

[6] Rozsah je omezen po 440 Hz.

Další informace viz úvod do podrobných specifikací.

Parametry střídavého proudu

Funkoo	Perceh	Rozlišení	Přesnost				
FUIKCe	Ruzsdii		20 až 45 Hz	45 až 1 kHz	1 až 20 kHz	20 až 100 kHz ^[4]	
AC μA ^[3]	500 µA	0,01 μA	1 % + 20	0,6 % + 20	0,6 % + 20	5 % + 40	
	5000 µA	ο,1 μA	1 % + 5	0,6 % + 5	0,6 % + 10	5 % + 40	
AC mA ^[3]	50 mA	0,001 mA	1 % + 20	0,6 % + 20	0,6 % + 20	5 % + 40	
	400 mA	0,01 mA	1 % + 5	0,6 % + 5	1,5 % + 10	5 % + 40	
AC A ^[2]	5 A	0,0001 A	1,5 % + 20	0,8 % + 20	3 % + 40 ^[4]	Nespecifikováno	
	10 A ^[1]	0,001 A	1,5 % + 5	0,8 % + 5	3 % + 10 ^[4]	Nespecifikováno	
[1] Rozsah 10 A (10 % až 100 % rozsahu).							

[2] 20 A po 30 sekund zapnuto, 10 minut vypnuto. >10 A nespecifikováno.

[3] 400 mA průběžně; 550 mA po 2 minuty zapnuto, 1 minuta vypnuto.

[4] Ověřeno konstrukčními a typovými zkouškami.

Další informace viz úvod do podrobných specifikací.

Parametry stejnosměrného napětí

	(10)		Přesnost				
Funkce	Rozsah	Rozlišení		A	AC proti DC, DC p	oroti AC, AC+DC [[]	2]
	P 20	10	DC	20 až 45 Hz	20 až 45 Hz 45 Hz až 1 kHz	1 až 20 kHz	20 až 35 kHz
DC mV	50 mV ^[3]	0,001 mV	0,05 % + 20 ^[4]			1,5 % + 40	5 % + 40
	500 mV	0,01 mV	0,025 % + 2 ^[5]		0,5 % + 80	1,5 % + 40	5 % + 40
DC V ^[1]	5 V	0,0001 V	0,025 % + 2	2 % + 80		1,5 % + 40	5 % + 40
esenia	50 V	0,001 V	0,025 % + 2	2 /0 + 00		1,5 % + 40	5 % + 40
	500 V	0,01 V	0,03 % + 2			Nespecifikováno	Nespecifikováno
	1000 V	0,1 V	0,03 % + 2			Nespecifikováno	Nespecifikováno
$\widetilde{\mathbf{V}}^{[1]}$	1000 V	0,1 V	1 % + 20	Nespecifikováno	Nespecifikováno	Nespecifikováno	Nespecifikováno
[1] Přidejte 20	[1] Přidejte 20 cyklů v duálním displeji ac proti dc, dc proti ac nebo ac+dc.						
[2] Rozsahy j	[2] Rozsahy jsou specifikovány od 2 % po 140 % rozsahu, vyjma 1000 V je specifikováno od 2 % po 100 % rozsahu.						
[3] Během použití relativního režimu (REL ▲) pro kompenzaci odstupu.							
[4] Přidejte 4	cykly/10 mV AC v du	álním zobrazení: stříd	avý nad stejnosměrn	ným, stejnosměrný na	ad střídavým nebo s	třídavý + stejnosměr	ný

[5] Přidejte 10 cyklů/100 mV AC v duálním zobrazení: střídavý nad stejnosměrným, stejnosměrný nad střídavým nebo střídavý + stejnosměrný

Parametry stejnosměrného proudu

		0	Přesnost				
Funkce	Rozsah	Rozlišení		AC proti DC, DC proti AC, AC+DC ^[1]			[1]
		al.	DC	20 až 45 Hz	45 Hz až 1 kHz	1 až 20 kHz	20 až 100 kHz ^[5]
DC μA ^[4]	500 μΑ 📎	0,01 µA	0,075 % + 20	1 % + 20	0,6 % + 20	0,6 % + 20	5 % + 40
	5000 μA	0,1 µA	0,075 % + 2	1 % + 5	0,6 % + 5	0,6 % + 10	5 % + 40
DC mA ^[4]	50 mA	0,001 mA	0,05 % + 10 ^[6]	1 % + 20	0,6 % + 20	0,6 % + 20	5 % + 40
	400 mA	0,01 mA	0,15 % + 2	1 % + 5	0,6 % + 5	1,5 % + 10	5 % + 40
DC A ^[2]	[©] 5 A	0,0001 A	0,3 % + 10	1,5 % + 20	0,8 % + 20	3 % + 40 ^[5]	Nespecifikováno
	10 A	0,001 A	0,3 % + 2	1,5 % + 10	0,8 % + 10	3 % + 10 ^[5]	Nespecifikováno

[1] Rozsahy AC+DC jsou specifikovány od 2 % po 140 % rozsahu.

[2] 20 A po 30 sekund zapnuto, 10 minut vypnuto. >10 A nespecifikováno.

[3] Přidejte 20 cyklů v duálním displeji ac proti dc, dc proti ac nebo ac+dc.

[4] 400 mA průběžně; 550 mA po 2 minuty zapnuto, 1 minuta vypnuto.

[5] Ověřeno konstrukčními a typovými zkouškami.

[6] Koeficient teploty: 0,1 X (specifikovaná přesnost)/ °C (<18 °C nebo > 28 °C)

Parametry odporu

Funkce	Rozsah	Rozlišení	Přesnost			
Odpor	50 Ω ^{[1][3]}	0,001 Ω	0,15 % + 20			
	ੇ 500 Ω ^[1]	0,01 Ω	0,05 % + 10			
Start of the second	5 kΩ ^[1]	0,0001 kΩ	0,05 % + 2			
S ²⁵ rtt ^p //	50 kΩ ^[1]	0,001 kΩ	0,05 % + 2			
	500 kΩ	0,01 kΩ	0,05 % + 2			
, and	5 MΩ	0,0001 MΩ	0,15 % + 4			
I ESC	30 MΩ	0,001 MΩ	1,5 % + 4			
	50 MΩ	0,01 MΩ	1,5 % + 4			
	50 MΩ až po 100 MΩ	0,1 MΩ	3,0 % + 2			
	50 MΩ až po 100 MΩ	0,1 MΩ	8 % + 2			
Vodivost	50 nS ^[2]	0,01 nS	1 % + 10			
[1] Během použití relativního režimu (REL Δ) pro kompenzaci odstupu.						
[2] Přidejte 20 cyklů nad 33 nS v	[2] Přidejte 20 cyklů nad 33 nS v rozsahu 50 nS.					
[3] Pouze 289.	[3] Pouze 289.					

Parametry teploty

Teplota	Rozlišení	Přesnost ^[1,2]			
-200 °C až +1350 °C	0,1 °C	1 % + 10			
-328 °F až +2462 °F	0,1 °F	1 % + 18			
[1] Nezahrnuje chybu sondy termoelektrického] Nezahrnuje chybu sondy termoelektrického snímače.				
2] Parametry přesnosti předpokládají stabilitu teploty prostředí na ±1 °C. Pro změny teploty prostředí ±5 °C, platí charakteristiky přesnosti po 2 hodinách.					

Parametry zkoušení kapacitance a diod

Funkce	Rozsah	Rozlišení	Přesnost
Kapacitance	1ºnF ^[1]	0,001 nF	1 % + 5
	¹⁰ nF ^[1]	0,01 nF	1 % + 5
	100 nF ^[1]	0,1 nF	1 % + 5
	γÎμF	0,001 µF	1 % + 5
	10 µF	0,01 µF	1 % + 5
	100 µF	0,1 μF	1 % + 5
is of the	1000 µF	1 μF	1 % + 5
	10 mF	0,01 mF	1 % + 5
	100 mF	0,1 mF	2 % + 20
Zkouška diody	3,1 V	0,0001 V	1 % + 20
[1] S fóliovým kondensátorem neb	oo lepším, pomocí relativního režimu (F	REL Δ) k nulovému zbytku.	

Parametry měřiče frekvence

Funkce	Rozsah	Rozlišení	Přesnost			
Frekvence	99,999 Hz	0,001 Hz	0,02 % + 5			
(0,5 Hz až 999,99 kHz, šířka	⊳ 999,99 Hz	0,01 Hz	0,005 % + 5			
impulzu >0,5 µs)	9,9999 kHz	0,0001 kHz	0,005 % + 5			
2.5 ¹ to ^{jjour}	99,999 kHz	0,001 kHz	0,005 % + 5			
	999,99 kHz	0,01 kHz	0,005 % + 5			
Činitel využití ^{[1][2]}	1,00 % až 99,00 %	0,01 %	0,2 % na kHz + 0,1 %			
Šířka impulzu ^{[1][2]}	0,1000 ms	0,0001 ms	0,002 ms + 3 krát			
	1000 ms	0,001 ms	0,002 ms + 3 krát			
	10,00 ms	0,01 ms	0,002 ms + 3 krát			
	1999,9 ms	0,1 ms	0,002 ms + 3 krát			
[1] Pro nárůst <1 µs. Signály vystředěné okolo spouštěcích úrovní.						
[2] 0,5 až 200 kHz, šířka impulzu >2 μs. Rozsah šířky impulzu je stanovena frekvencí signálu.						

Citlivost měřiče frekvence

Vstupní rozsah	Přibližná citlivost na napětí (rms sinusoidální vlna) ^[1]	AC šířka pásma ^[2]	Přibližné spouštěcí úrovně DC	DC šířka pásma ^[2]	
//	15 Hz az 100 kHz				
50 mV	5 mV	1 MHz	5 mV a 20 mV	600 kHz	
500 mV	25 mV	1 MHz	5 mV a 20 mV	1 MHz	
5 V	0,25 V	700 kHz	1,4 V a 2,0 V	80 kHz	
50 V 🧲 🗸	2,5 V	1 MHz	0,5 V a 6,5 V	1 MHz	
500 V	25 V	300 kHz	5 V a 40 V	300 kHz	
1000 V	50 V	300 kHz	5 V a 100 V	300 kHz	
Vstupní rozsah	Přibližná citlivost na proud (rms sinusoidální vlna)	AC šířka pásma	Přibližné spouštěcí úrovně DC	DC šířka pásma	
500 μΔ	25 IIA	100 kHz			
500 µA	25 μΑ	100 KH2	4	Nedostupné	
5000 μΑ	250 μΑ	100 KHZ			
50 mA	2,5 mA	100 kHz	Nedostupné		
400 mA	25 mA	100 kHz	Neuostupite		
5 A	0,25 A	100 kHz			
10 A	1,0 A	100 kHz			
[1] Maximální vstup = 10 x rozsah (1000 V maximum, 2 x 10 ⁷ V-Hz maximum výrobku). Šum při nízkých frekvencích a amplitudách může ovlivnit přesnost.					
[2] Typická šířka pásma frekvence s plnou (nebo maximum 2 x 10 ⁷ V-Hz výrobku) rms sinusoidální vlnou.					

Parametry MIN MAX, záznamu a špičky

Funkce Nominální reakce		Přesnost			
	200 ms na 80 % (stejnosměrná funkce)	Specifikovaná přesnost ±12 krát pro změny >425 ms průběhu v manuálním rozsahu.			
	350 ms na 80 % (střídavá funkce)	Specifikovaná přesnost ±40 krát pro změny >1,5 s průběhu v manuálním rozsahu.			
Špička	250 μS (špička) ^[1]	Specifikovaná přesnost ±100krát ^[2] až po 5 000krát (plný rozsah) měření. Pro vyšší měření špiček (po 12 000krát), specifikovaná přesnost ±2 % ^[3] měření.			
Činitel amplitudy:	350 ms až 80 %	Pro periodické vlnové formy od 50 do 440 Hz ± (4 % + 1krát).			
[1] Pro opakované špičky; 2,5 ms pro jednotlivé události. Špička není specifikovaná pro 500 µA DC, 50 mA DC, 5 A DC.					
[2] 200krát pro 500 mV A	[2] 200krát pro 500 mV AC, 500 µA AC, 50 mA AC, 5 A AC.				
[3] 3 % pro 500 mV AC, 5	[3] 3 % pro 500 mV AC, 500 µA AC, 50 mA AC, 5 A AC.				

Parametry vstupu

Funkce	Ochrana proti přetížení ^[1]	Vstupní impedance	Běžný režim Činitel neúspěšnosti (1 kΩ nerovnováha)		Neúspěšnost normálního režimu						
V	1000 V	10 MΩ <100 pF	>120 dB při dc, 50 Hz nebo 60 Hz		>60 dB při 50 Hz nebo 60 Hz						
₩V	1000 V ^[2]	10 MΩ <100 pF	>120 dB při dc, 50 Hz nebo 60 Hz		>60 dB při 50 Hz nebo 60 Hz						
ĩ	1000 V	10 MΩ <100 pF (vázáno na střídavý proud)	>60 dB, dc na 60 Hz								
LoZ V	1000 V	3,2 kΩ <100 pF (vázáno na střídavý proud)	Nespecifikováno		Nespecifikováno						
	Ochrana	Přerušený obvod	Plné napětí		Typický zkratový proud						
Funkce	proti přetížení ^[1]	zkušební napětí	Na 500 kΩ	≥5 MΩ nebo 50 nS	500 Ω	5 kΩ	50 kΩ	500 kΩ	5 ΜΩ	50 MΩ	500 MΩ
Ω	1000 V ^[2]	5 V dc	550 mV	<5 V	1 mA	100 µA	10 µA	1 µA	0,3 µA	0,3 µA	0,3 µA
50Ω	1000 V ^[2]	20 V sníženo na 2,5 V	500 mV		10 mA						
*	1000 V ^[2]	5 V dc	3,1 V dc		1 mA						
 [1] Vstup je omezen pro výrobek V rms sinusoidální vlny krát frekvence 2 x 10⁷ V-Hz. [2] Pro obvody <0,5 A zkrat. 660 V pro vysokoenergetické obvody. 											

Zátěžové napětí (Α, mΑ, μΑ)

Funkce	Rozsah	Zátěžové napětí
mA, μA	500 μA	102 μV/ μA
	5000 µA	102 μV/ μA
ie fin subscription	50 000 mA	1,8 mV/mA
	400,00 mA	1,8 mV/mA
A Contraction of the second se	5,0000 A	0,04 V/A
	10 000 A	0,04 V/A
Viese .		